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DIFFUSION FIELDS IN A TOROIDAL CONDUCTING SHELL

OF CIRCULAR CROSS SECTION

I. Introduction

Over the years abundant analytical work has been done on the diffusion of the mag-

netic field in hollow circular cylindrical conductors of infinite length' - ', and has led to

the understanding of the diffusion process in such a geometry. Much less attention has

been given to the diffusion of fields in toroidal vessels. As a rule, the diffusion problem
through toroidal chambers is more complex than through cylindrical conductors. The dif-

ficulty in toroidal geometry is due mainly to the application of the boundary conditions

in the inner and outer surfaces of the torus. However, when the wall thickness of the

torus becomes small in comparison to its minor radius, i.e., for a conducting shell, then

the problem simplifies considerably. The toroidal shell approximation has been used to

compute analytically the magnetic field of two toroidal segments, that carry known time

independent currents. In this paper, we have extended the work of P. Rolicz et at.4 to

study the diffusion of fields through toroidal conducting shells.

The analytic results are further simplified under the additional assumption of a small

aspect ratio toroidal conducting shell. To the lowest order on the aspect ratio, our work

indicates that the diffusion of fields through a conducting shell of conductivity a, major

radius ro, minor radius a and thickness d., depend on three characteristic times ro, r,

and r2, where r, = izocad, /2 (diffusion time), To = 2r 1[tn(8r 0 /a) - 2] (L/R time), and

r2 = r1/2. In contrast, the diffusion process in cylindrical shells depends on a single

characteristic time (ri).

It is well known that there is a time lag between the magnetic field in the interior of

the conducting shell and the externally applied magnetic field. This time lag can be easily

measured in the laboratory and therefore is a useful physical quantity. When the transient

phase of the diffusion process is over, the time lag becomes independent of time and is

called the delay time Td. For a linearly rising applied magnetic field the delay time for a

cylindrical conducting shell is equal to Ti. On the other hand, in a toroidal conducting

shell the delay time depends on both rO and Ti and also on the flux condition, i.e., the

ratio ot the average field to the local field on the minor axis. Specifically Td = (ro + 3r 1)/2

for the special case of a field that satisfies the betatron flux condition, i.e., when the value

of the flux condition is equal to two.

In contrast to the field, the current flowing on the wall of the conducting shell depends

only on To. Thus, by measuring experimentally the delay time of the fields and also the

rise time of the wall current, all characteristic times can be determined.

Manuscript approved August 9. 1990.



The results of the analysis have been compared with the predictions of the two-

dimensional finite difference numerical code TRIDIF5 . The agreement between theory

and numerical computation is fairly good, in spite of the fact that the theory was done

for a toroidal conducting shell, while in the numerical computation the torus had finite

thickness. Specifically, the delay time predicted by the analysis is approximately 5% longer

than the prediction of the code. Similarly, the temporal profile of the wall current from

the analysis and the TRIDIF code agree to within a few percent. However, the temporal

profile of the external field index and flux predicted by the theory and the code are in good

agreement after a few delay times but not initially.

The delay time predicted by the theory and the code has been compared with the delay

time measured in the toroidal chamber of the NRL modified betatron. For the parameters

of the NRL device, the computed delay time is 37/zsec, while the measured delay time is

34 1isec. The less than 10% difference between the two delay times is probably within the

uncertainty of the measurement.

In Section H, the theory is developed and a comparison is made with the numerical

results obtained from the TRIDIF code. Section III contains a description of the NRL

toroidal device and of the coils that generate the external magnetic field, and the measured

quantities are compared with the theoretical results. Finally, in Section IV, the conclusions

are presented.

II. Theory and Comparison with Numerical Results

The diffusion fields are computed near the minor axis of the circular cross section,

toroidal conducting shell. As shown in Figure 1, the conductor has a major radius ro, a

minor radius a, wall thickness d, where d. << a, and conductivity a. In the presence

of an external magnetic field which is axisymmetric and time-dependent, the diffused

magnetic field inside the conductor is described by the diffusion equation

aAx x (1)

where the vector potential A has only one nonzero component A* that depends only on the

cylindrical components (r, z) and on the time. The magnetic field components are given
by

azeBr - gz '(2a)

BZ = 1 rAo t (2b)

r 2r



while the electric field is equal to aAe
EV =- a-T (3)at

Equation (1) is identical to Ampere's law combined with Ohm's law inside the con-

ductor. In the special case, when the toroidal conductor is a shell, i.e., when d, << a,

this equation can be integrated and provides the first boundary condition, i.e.,

ix (lo,' - fl) = uoud~f'", (4)

where ii is the unit vector normal to the conducting wall and directed towards the region

outside the conductor and /o is the permeability of the vacuum. The second boundary

condition is obtained from the requirement that the electric field is continuous across the

boundary, i.e.,
in = joul. (5)

For a small aspect ratio a/ro vessel, it is appropriate to use toroidal coordinates. The

cylindrical coordinates (r, z) are related to the toroidal coordinates (,7, C) by:

r = b sinh 7 (6a)
cosh q7 - cos

sine (6b)
cosh r7 - cos

where b is a constant. These relations can be easily inverted, namely:

e~z- 2 z = !I - b+ (7a)
r2 (r + b)2 + Z2 ,

e- 1cos = (1 - + 1 ( + e- 2 .  (7b)

From Eq. (7a), we see that for fixed 71, the coordinates (r, z) describe a :cle whose radius

is b/ sinh t/. If for ir = io this circle coincides with the toroidal shell whose minor radius is
2

a, then it is straightforward to show that b = ro 1 - . The points (?7, C) outside

the toroidal shell are determined by the inequality 17 < to, while the points inside the

hollow region of the shell are determined by r/> ,7o. In both regions, the right hand side

of Eq. (1) is zero and, in toroidal coordinates, this equation reduces to

1 r (hhe a 8  a (h h,7 aAe 1
7 h,, a577/ ae hf h} 2Ae=0, (8)
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where

h= hC b (9a)
cosh1 - cos C'

b sinh 1 (9b)
cosh t7- cos

If we set A0 = b(cosh - cos C) F(t 7 , e), then the differential equation satisfied by F(7, ) is
a separable equation and its solution can be expressed in terms of the toroidal functions.

Specifically, the solutions of Eq. (8) in the two regions inside and outside the toroidal shell

are:
A"' = b(cosht7-cose) 2 emam(t)Qi _(coshi)cosme, (10a)

m=O

00

Aut = Aezt + b(cosh 77- cos e) '2 Embm(t)P'-.1(cosh Y) cos m, (10b)
m=O

where E0= 1, c.m = 2 when m = 1, 2, 3, ... , P m1.(coshv7),Q (cosh t) are the associated

Legendre functions of the first and second kind, respectively, and Aezt (77, e, t) is the vector

potential associated with the applied external field. The time-dependent parameters am (t)

and bm (t) are determined from the boundary conditions. Since the i-component of the

magnetic field is equal to
180

B h1-h a - heAe, (11)

and the external field is zero at t = 0, the boundary conditions of Eqs. (4) and (5),

expressed in terms of the vector potential Ae, become:

Ain(flo, , t) = Aout(r 0 , ,t), (12a)

a ~ (At? ) a ' fCvt), A'Oo t
(cosh 170- COS C) 2 ( oh b -

ar, ~~(cosh 1 -CO -Co )2L 7=toaIn te -T(12b)

where r = Aordwb.

In the following, we shall assume that there are no external current coils very near

the toroidal conductor or inside it. If Y7, is the toroidal coordinate of the coil nearest to

the minor axis, and such that 17, < i7o, then the external vector potential Aezt is given by
0O

A -t = b(coshr1- cos) 2 emaet(t)Ql _(coshr/)cosm, (13)

m=O

for all 17 > Y7c. The time-dependent parameters amt(t) are known and are associated with

physical properties of the external field, such as external field index, flux condition, etc.

4



Now, it is straightforward to compute the unknown coefficients am, bm from the bound-

ary conditions. From Eq. (12a) we obtain

(am - a.t) Qrn_ (cosh Y7o)
bm - P1 _(coshn~o) (14)

Similarly, Eq. (12b) together with Eq. (14) and the identity6

dPI 1 u dQ 1  
1(u) _ 4 2 

-1dM-_ (U) 4mn

Q 1m u) P 1  1)_ 12 du (u) md) du 4(u 2 - 1)'

leads to the following set of coupled differential equations for am:

= 1 1- + 1 Q (cosh 7o) axt

-b (ao a +2 aocoshno Q (cosh no)(ai- a , (16a)

2

a1( 1 1Qm (cosh no)am -- (am a- a~
) + (a- m-l)

Tm -7-, -+ -1 2coshjo Q1 _ (coshnto) (am- - a" 12

+1 1 Q+(cosh Y7o)2 _(am+, - arnl'x ,) (16b)
,r,+, 2 cosh t7o Qn_. (cosh io) M+

2

where m =1, 2,3,... -and

47tanh o 1p
rm = 4n 1 _.- (coshnio) P 1_ (coshio). (17)

4 m 2 -1 rn- 2  m2

The toroidal functions P _ and Q, _1 appearing in Eqs. (16a), (16b) and (17) are

given by the following exact expressions 6:

Pn- (cosh 7) = (srih (in ))
m2 7rr(m -n + 1)

m (n + - +

, s!(1 - m).

(-1)n2+ 1 'r(m + n + -) (sinh)nem+,+ )l > (n + - ).(m + n + j),e
+Ir(m + 1) ( 1)

* [tn(4e") + u. + um-. - Vn+ - Vm+n+lI, (18a)

5



Q2r (c+sh. +) (sinh77)'e-("+.+)
2m- h  r(m + 1)

* 2 (n + 1-).(m ±f+ 18

=0 ++(18b)

where

(a). = a(a + 1)(a + 2)...(a + s - 1), (a)o = 1, (19a)

Un = 1 E ' 1 o = 0, (19b)
k=1

1
V. = Vo = 0. (19c)

k=1

For m = 0, the first term in Eq. (18a) is omitted, since bmn = 1 for m = n, and 6 mn = 0 for

m -n. The expressions above are appropriate for the region inside the toroidal conductor,

i.e., for .q > 27o, as well as on its surface.

Up to this point the results are exact. For small aspect ratio a/ro, e- n° = (ro + a -

b)/(ro + a + b) ; a/2ro << 1. Thus, to the lowest order in the aspect ratio, Eq. (17)

becomes

ro = 2TD n"o - 21, (20a)
at a

T D (20b)
Tm

where m = 1,2,3, ..., and
Aioada

2 (21)

The time To is the L/R time of the toroidal conductor, while 7m are the higher order

diffusion times.

An approximate expression for Ain can be obtained from Eq. (10a) by keeping terms

up to order e- 2n, i.e., up to second order toroidal corrections. Making use of the identity6

00

(cosh7 - cos E)4 = C mCm(?7) cos m, (22)

where

C7 en (1 +e- 2 ,) ~Q-.(cosh 7) -2e- Q (cosh 7)] (23a)27r" (1 24e
2 /  _(oh 1 + e - 2 17

Cm(7) = -e"(1 + e- 2 1) (23b)

27r
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Q1 + e 2 
( c o s r 7( c o s h i)1+

* Qm (cosh)(cosh 7) + Qm+ (cosh 1)

and also of Eq. (18b), a lengthy calculation leads to the approximate expression

3lin ao + -(ao - al)e - 2 (24);z-2 /21 2 24
-(ao - 3al)e - cos 1 (ao + 6a, - 15a 2)e- 2n cos2C]

Using Eqs. (7a), (7b) and keeping terms up to order 1 - and(z/r)2 , Eq. (24) reduces

to
A b [ 1 b
2nI ao - -(ao - 3aj)(1 - (25)

2v/2 2

+1(ao + 15a 2)(1 - b) + -(ao + 4a, - 5a2)(r
)2

16 r 16 rj

i.e., the approximate Ain has been expressed in terms of the cylindrical coordinates (r, z).

The magnetic field components near the minor axis are determined from Eqs. (2a) and

(2b) and are equal to
B in -BonDz (26a)

Bn; Bo I - tD(1 - )] (26b)

where

Bzo -- -4--i(ao + 3a 1 ), (27a)

is the vertical field component near the minor axis and

3 ao + 4a, - 5a2nD ---- ,(27b)
4 ao + 3a,

is the field index. To first order in a/to, the magnetic flux to through the area 7rr 2 oi the

midplane is

=,Do 27rroAan(ro,O,t) (28)

-27rr 0 - a

2V

Defining ED by means of the relation to - 27rroBzo(1 - ED), the vertical component of the

field on the minor axis can be written

B~o(1 - ED) W -- ao. (29)

7



The parameter ED is a measure of the flux condition. When ED = 0, the betatron flux

condition is satisfied.

The quantities ao,al , a2 are determined completely by the magnetic field, the field

index and the flux on the minor axis, and, therefore, are parametric representations of

these physical quantities. But the vector potential that describes the external field in Eq.

(13) has exactly the same form as A' in Eq. (10a). Therefore, if B0 , n and V t

27rroBo(1 - E) are the external field, external field index and external flux on the minor

axis, then azt, a'zt and a"' can be expressed as follows:

at - 2 Bo(1 - E) (30a)
7r

ext 2 _ 2-
a1  -B(i + c), (30b)

37r

a. 157r-Bo(7 - 8n + E). (30c)

These expressions are used in solving Eqs. (16a), (16b). It is assumed that only Bo

is time-dependent. This is a valid assumption provided that the coils that generate the

external field, carry the same current and are filaments, i.e., there is no diffusion process

associated with them.

All the physical quantities of interest have been computed to first order in toroidal

corrections. Therefore, it is sufficient to compute the parameters ao, a,, a2 to first order

in a/rO. If all terms of order e-2 17o or higher are omitted, Eqs. (16a), (16b) become

1 -- ao- tz), (31a)
itm =z 1 TO am - aezi)

-- (am - a et ) + 1 2m +1 - ef 3b
Tm r 2m..+ 1 M31)

where m = 1,2. This system of equations can be integrated easily. Under the initial

conditions am (O) = 0, the solutions for r2 = rj2are:

ao 2 2(I - E)Ao, (32a)
7r

a, = - 2 _( E ,+2 1-EA (32b)

a2 2V [ '(7-8n+E-4(1 +f) + 8a (I ) A 2

8



+(( E) 8o 1 E) Al + 8a (1 -,E)Ao ,(32c)
+ 41+€ 1a(1 (1 -a)(2 -a)

where
Ci Z(33a)
TO

and1eti, oAm - et' /Bo(t')dt ' .  
(33b)

Tm

Substitution of ao, a,, a 2 into Eqs. (27a), (27b) leads to

B ( (1 E) A +[ (2 -1 a) (1- E)] A,, (34a)

2 1 (- Ao+ [- ( 2 1-]a

( + 2a-_k(1E)Ao +[n -( q8+ 2 -a _)1- A2

(D= (+ 1 (-- E)Ao + [1 -(I+ 1--)( -€]A,(3b

Another interesting physical quantity is the surface wall current density, which is given

by

J, = _ad A(o, ,t) (35)

To first order in toroidal corrections, Eqs. (25), (31a), (31b), (32a), (32b) give

J.0 ,,2ro {(1-E)(Ao - Bo) - 4+a) (1- )(Ao - Bo) (36)
oa K 1 a

+C 2!! (1-- ) (A - Bo) a-Cos ,
--- 1+-a ro

where cos = (r - ro)/a and r is the radial position of any point on the wall chamber.

The wall current is equal to

I = wJ adO (37)

- 4rra(1 - )(Ao - Bo).I~'o

As a first application, consider a rising external magnetic field that reaches a constant

value, i.e.,

Bo(t) = bo(1 - etr"). (38)

From Eq. (33b), we have:

Am - bo 1 e-t/r.. + rmrx e- t/ (9

1 Fez"T'ezt

9



For t >> rt and t >> rm, the coefficient Am - bo and from Eqs. (34a), (34b), Bo = bo

and nD n. Also the wall current goes to zero. All three conclusions are as expected.

For a sinusoidally varying field

Bo(t) = bosinwt, (40)

the coefficients Am are given by

Am 1 bo [in wt - Wr coswt + w-,e - t/ r (41)A 1- l+(Wrm) 2 I

After a long time, i.e., for t >> rm, the external field and the field on the minor axis are

not in phase, but their phase difference remains constant. On the other hand, for small

times, i.e., for wt << 1 and t << rm, the coefficients Am bowt 2 /2rm and the field index

becomes
16n - (5a + 6)(1 - e) (42)

4[2-(1+a)(1-E)"

Furthermore, assuming that wrm << 1 and wt << 1, but not t >> rm, we obtain

Am bow It - Tm(1 - e-t/r.)] (43)

and

Bo z bo t - rd + rd -T 1 roe t/ro d- o t/, (44)
To - 1 TOT i- T"

where the delay time rd is equal to

Td- (1 - E)ro + (3 - E)Tl (45)
2

In , ntrast, the delay time for a cylinder of infinite length is equal to the diffusion time.

It is apparent from Eq. (45) that in the case of the toroidal conducting shell, the delay

time depends linearly on both the L/R time ro and the diffusion time T. In addition, for

a toroidal shell, B, 0 has an exponentially decreasing dependence on both times To and rl,

while the wall current, from Eq. (37), depends only upon To, i.e.,

I = -4irrwb0(1- c)(1 - e-t/r), (46)

i.e., it reaches exponentially its maximum value with the L/R time To.

A direct comparison has been made between the theory presented above and the

numerical results from the 2-dimensional TRIDIF code. The set of parameters used for

10



the comparison are listed in Table I. For these parameters, Eqs. (20a), (20b), (45), give

r0 = 11.28 .sec, r = 2.95 jisec, a = 0.26, and rd = 10.42 jsec. The solid curves in Figs.

2(a)-2(d) show Bzo, rD, 4o/(7rr Bzo), and I as a function of time. In the computer run,

the inner minor radius of the toroidal conductor is 15 cm and the outer minor radius is 17

cm. In the region of the chamber, the mesh has a cell size Ar = 0.5 cm, Az = 1.0 cm, but

further out it is much less dense. Thus, in the radial direction there are 157 mesh points

over a distance of 300 cm, while in the vertical direction there are 71 mesh points over a

distance of 200 cm, and the time step used is At = 0.5 .zsec. Advantage is taken of the

midplane symmetry, i.e., the calculation is confined to the region z > 0. The external field

is generated by current filaments (coils) located at the same positions as in the modified

betatron experiment. All the coils carry the same current and have the same sinusoidal

dependence. In the absence of the toroidal chamber the maximum vertical field generated

by these coils on the minor axis, i.e., at r = 100 cm, z = 0, is BO = 1267 Gauss, when the

maximum current through the coils is 40 kA. This is the value of b0 used in the theory. In

the absence of the toroidal chamber, these coils generate a field index of 0.54 on the minor

axis and an E = -0.067, but the values chosen in the theory are slightly different, so that

at times t > 30 usec the theoretical and numerical nD and 4o/(7rroBo) are identical.

The dashed curves in Figures 2(a) - 2(d) give the predictions of the code for Bo, nD,

4o/(7rroBo) and I as a function of time. The straight line in Fig. 2(a) is Bo, when

a = 0. The numerical delay time, obtained from Fig. (2a), is 9.7 /Asec as compared to

the theoretical valuq of 10.42 Asec. The small difference is attributed to the fact that

r0 and r, depend on the volume of the numerical integration. It should be noticed that

in the numerical calculation the integration has been carried inside a cylinder of radius

300 cm and of half-height 200 cm, while in the theoretical work the integration has been

carried out over the whole space. To obtain some insight into this effect, let us look at

the diffusion through a cylindrical conducting shell of infinite length, where the region of

the numerical integration is limited within a perfect conductor located at a radius rl. The

diffusion time is equal to rD [I - (a/ri) 2], where a is the radius of the conductor and rD

is given by Eq. (21). It is apparent that the diffusion time decreases as the volume of the

integration region decreases, and, therefore, the inductance of the system decreases. As

another example consider a toroidal conducting shell, with a region of integration confined

within a perfect conductor located at t7 = i7l and therefore the radial positions r are

limited to the values between r, mn = btanh(il 1 /2) and r, maz = bcoth(t71/2). All the

theoretical results obtained above remain the same except for the L/R time in Eq. (20a)

11



that is replaced by 2 T7D n - 2 - 2ro ) 2. Again, the L/R time (but not the[t a (2r, ma/

times Tr1 , r 2 ) decreases as the volume of the integration region decreases and so does Td.

In the example given above the region for r < rmin is excluded, while in the numerical

results this region is included. For this reason, the comparison of the numerical results

is made with the theoretical results for the whole space rather than a finite region of

integration. The largest discrepancy between theory and numerical computation is in the

field index for small times. This could be due to the large time step (0.5 itsec) that was

used in the numerical integration or to the fact that the field index is computed from the

second derivative of the stream function rA 9 and this function is not accurately computed

initially by the code. The same argument is applicable to the smaller discrepancy, for

short times, in the quantity (o/(7rr0B.o). Over all, however, the agreement is fairly good

between theory and numerical computation with the TRIDIF code.

III. Experimental Results

This section brielfy summarizes the measurements on the time delay of the vertical

magnetic field caused by the vacuum chamber of the device and compares the experimental

results with the predictions of the theory and that of the computer code.

The NRL modified betatron comprises three different external magnetic fields; the

betatron field that is a function of time and is responsible for the acceleration of the

electrons, the toroidal magnetic field that varies only slightly during the acceleration of

the electron ring and the strong focusing field that also has a very weak time dependence.

These three fields have been described previously. However, for completeness we briefly

describe in this paper the vertical field and the vacuum chamber.

The betatron magnetic field controls mainly the major radius of the gyrating electron

ring and is produced by a set of 18 air core (see Fig. 3), circular coils connected in series.

Sixteen main coils and four trimmers are used to generate a field configuration with a flux

condition equal to 1.92. Their total inductance is approximately 343 uH. The coils are

powered by an 8.64 mF capacitor bank that can be charged up to 17 kV. At full charge,

the bank delivers to the coils a peak current of about 45 kA. The current flowing through

the coils produces a sinusoidally varying field having a quarter period of 2.6 msec and its

amplitude on the minor axis at peak charging voltage is 2.1 kG. Immediately after the peak

the field is crowbarred with a 4.5 msec decay time. The temporal profile of the vertical

field is shown in Fig. 4.
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The flux condition and field index are adjusted by two sets of trimmers that are

connected in parallel to the main coils. The current through the trimmers is adjusted with

series inductors. Typically 10 - 15% of the total current flows through the trimmers.

The 100 cm major radius, 15.2 cm inside minor radius vacuum chamber has been

constructed using epoxy reinforced carbon fibers. The desired conductivity is obtained by

embedding a phosphor bronze screen inside the body of the graphite as shown in Fig. 5.

The graphite is 2.5 mm thick and has a surface resitivity of 26.6 mil on a square. The

screen has 250 x 250 wires per inch and is made of 40 /im diameter wire with an equivalent

surface resistivity of 12.8 mfl on a square. The calculated resistance for the entire vacuum

chamber is 57 mfl. The measured D.C. resistance of the toroidal vacuum vessel is 68 ± 2

mfl. The outside surface of the chamber is covered with a 6.3 mm thick, epoxy reinforced

fiberglas layer. Figure 6 is a photograph of the vacuum chamber.

This novel construction technique has several attractive features, including control-

lable resistivity and thus magnetic field penetration time, high stiffness and tensile strength,

high radiation resistance (up to 500 Mrad) and low outgassing rate (- 10" Torr/sec-cm 2).

The vertical magnetic field is monitored with a small magnetic probe that is located on

the minor axis. The probe has been wound of gauge 35 copper wire, it has approximately

600 turns, its measured inductance is 6.2 mH and its measured internal resistance is 43 fl.

The output of the probe is fed to a passive integrator with a time constant of 20.5 msec.

To improve the time response of the probe the 50fl terminator at the input of the

integrator has been omitted. Oscillations in the output signal have been avoided by locating

the oscilloscope approximately 2 m away from the probe, inside an aluminum housing

cladded with mu metal.

Results from the measurements are shown in Fig. 7. The lower trace is the output

of the probe when it is located inside the vacuum chamber and the upper trace is the

output of the probe after the chamber is removed (vacuum field). It is apparent from the

oscillogram that after approximately 60 tsec the two signals are parallel and the lower is

delayed from the upper by 34 1Lsec.

For the parameters of the vacuum chamber, and when the flux condition o/rr02Bo

is equal to 1.92, i.e., for c = 0.04 both theory and the computer code predict a time delay

of 37 lzsec. The less than 10% difference between the two delay times is probably within

the uncertainty of the measurement.

In addition, we broke the electrical continuity of the vacuum chamber by unbolting

the joint of two adjacent sectors. The probe was placed on the minor axis with its axis of
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symmetry on the vertical plane that passes through the symmetry plane of the gap. The

intermediate trace in Fig. 7 shows the output of the probe for this measurement.

It is expected that at the symmetry plane of the gap the magnetic field to be identical

to the vacuum field. However, due to various constraints, the diameter of the probe and the

gap width are approximately equal and thus the measured field is lower than the vacuum

field.

IV. Conclusion

The diffusion of the magnetic field through a toroidal conducting shell has been studied

under the assumption of a small aspect ratio. The external magnetic field can have an

arbitrary field index and magnetic flux on the minor axis of the torus. The diffused field,

field index, magnetic flux and wall current were computed analytically and compared

with the numerical results from the TRIDIF code. Three time constants determine the

evolution in time of the diffusion process, namely, the L/R time rO, the diffusion time r1 ,

and r 2 =- Ti/2. The delay time depends linearly on ro, T and also on the flux condition of

the external field. The analytic delay time was larger to that computed from the TRIDIF

code. The difference is attributed to the finite volume of the region of integration in

the numerical computation which causes the inductance of the system to be smaller. In

general, the agreement between the theoretical and numerical results is quite good.

A measurement of the delay time in the toroidal chamber of the NRL modified be-

tatron gave a delay time approximately equal to 34 ttsec, i.e., less than 10% smaller from

the theoretical value of 37 psec.

In conclusion, we have seen that the diffusion process in the toroidal conducting shell

is much more complicated than that in a conducting cylinder. Therefore, the results for a

cylinder cannot be generalized to apply to a toroidal device. The case of the torus should

be investigated on its own merit.
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Table I.

Parameters for the diffusion theory.

Torus major radius, ro (cm) 100

Torus minor radius, a (cm) 16

Chamber wall thickness, d, (cm) 2

Torus wall conductivity, a (mho/cm) 14.666

Amplitude of sinusoidal

external magnetic field, bo (Gauss) 1267

Period of external magnetic field, T (Asec) 10 4

Field index of external magnetic field, n 0.53

Flux condition parameter

of external magnetic field, e -0.05
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VACUUM CHAMBER WALL COMPOSITION

See Detail
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Detail A
Wall Construction

Fig. 5 - 300 sector of the vacuum chamber and details of wall construction

22



kig. 6 Pho tograiph (it the epoxy reint-orced-carbon fiber vacuum -- amber

23



I-, McI~,urtrd x cr1 cul maonctc field vs time of the minor axis (r = I(X)cm.. z=0 ol the
Tor w BH'nm ir~i:c tr~ic the complete aCuunII chamber with a gap. lop trace: Alter the

rcwoal ot (lie chamher facuumn field).

24



DISTRIBUTION LIST
(Revised June 1, 1990)

Dr. M. Allen Dr. M. Caponi
Stanford Linear Accelerator Center TRW Advance Tech. Lab.

Stanford, CA 94305 I Space Park
Redondo Beach, CA 90278

Dr. W. Barletta
Lawrence Livermore National Laboratory Prof. F. Chen
P.O. Box 808 Department of Electrical Engineering

Livermore, CA 94550 University of California at Los Angeles
Los Angeles, CA 90024

Dr. M. Barton
Brookhaven National Laboratory Dr. D. Chernin

Upton, L.I., NY 11101 Science Applications Intl. Corp.
1710 Goodridge Drive

Dr. Jim Benford McLean, VA 22102

Physics International Co.
2700 Merced St. Prof. R. Davidson

San Leandro, CA 94577 Plasma Fusion Center
M.I.T.

Dr. Kenneth Bergerson Cambridge, MA 02139

Plasma Theory Division - 5241

Sandia National Laboratories Dr. J. Dawson
Albuquerque, NM 87115 University of California at Los Angeles

Department of Physics

Dr. Daniel Birx Los Angeles, CA 90024

Lawrence Livermore National Laboratory
P.O. Box 808 Dr. W.N. Destler

Livermore, CA 94550 Department of Electrical Engineering
University of Maryland

Dr. Charles Brau College Park, MD 20742

Los Alamos Scientific Laboratory
Los Alamos, NM 87544 Prof. W. Doggett

Physics Department

Dr. R. Briggs North Carolina State University

SSC Lab P.O. Box 8202

Stoneridge Office Park Raleigh, NC 27695

2550 Beckleymeade Ave. Ste 260
Dallas, TX 75237 Dr. H. Dreicer

Director Plasma Physics Division

Dr. Allan Bromborsky Los Alamos Scientific Laboratory

Harry Diamond Laboratory Los Alamos, NM 87544

2800 Powder Mill Road
Adelphi, MD 20783 Prof. W.E. Drummond

Austin Research Associates

Dr. H. Lee Buchanan 1901 Rutland Drive

DARPA Austin, TX 78758

1400 Wilson Blvd.
Arlington, VA 22209-2308 Dr. Don Eccleshall

Bldg. 120-Room 241

Dr. M. Butram Ballistic Research Lab.

Sandia National Laboratory Aberdeen Proving Grounds

Albuquerque, NM 87115 Aberdeen, MD 21005

25



Dr. J.G. Eden Dr. Z.G.T. Guiragossian
Department of Electrical Engineering TRW Systems and Energy RI/1070
University of Illinois Advanced Technology Lab
155 EEB 1 Space Park
Urbana, IL 61801 Redondo Beach, CA 90278

Dr. A. Faltens Prof. D. Hammer
Lawrence Berkeley Laboratory Laboratory of Plasma Physics
Berkeley, CA 94720 Cornell University

Ithaca, NY 14850
Dr. T. Fessenden
Lawrence Livermore National Laboratory Dr. David Hasti
P.O. Box 808 Sandia National Laboratory
Livermore, CA 94550 Albuquerque, NM 87115

Dr. A. Fisher Dr. C.E. Hollandsworth
Physics Department Ballistic Research Laboratory
University of California DRDAB - BLB
Irvine, CA 92664 Aberdeen Proving Ground, MD 21005

Prof. H.H. Fleischmann Dr. C.M. Huddleston
Laboratory for Plasma Studies and ORI

School of Applied and Eng. Physics 1375 Piccard Drive
Cornell University Rockville, MD 20850
Ithaca, NY 14850

Dr. S. Humphries
Dr. T. Fowler University of New Mexico
Associate Director Albuquerque, NM 87131
Magnetic Fusion Energy
Lawrence Livermore National Laboratory Dr. Robert Hunter
P.O. Box 808 9555 Distribution Ave.
Livermore, CA 94550 Western Research Inc.

San Diego, CA 92121
Mr. George B. Frazier, Manager
Pulsed Power Research & Engineering Dept. Dr. J. Hyman
2700 Merced St. Hughes Research Laboratory
P.O. Box 1538 3011 Malibu Canyon Road
San Leandro, CA 94577 Malibu, CA 90265

LCDR W. Fritchie Prof. H. Ishizuka
Space and Naval Warfare Department of Physics

Systems Command University of California at Irvine
Attention: Code PMW145B Irvine, CA 92664
Washington, DC 20363-5100

Dr. Donald Kerst
Dr. S. Graybill University of Wisconsin
Harry Diamond Laboratory Madison, WI 53706
2800 Powder Mill Road
Adelphi, MD 20783 Dr. Edward Knapp

Los Alamos Scientific Laboratory
Lt. Col. R. Gullickson Los Alamos, NM 87544
SDIO-DEO
Pentagon
Washington, DC 20301-7100

26



Prof. G.H. Miley, Chairman
Dr. A. Kolb Nuclear Engineering Program
Maxwell Laboratories 214 Nuclear Engineering Lab.
8835 Balboa Ave. Urbana, IL 61801
San Diego, CA 92123 Dr. Bruce Miller

Dr. Peter Korn TITAN Systems
Maxwell Laboratories 9191 Town Centre Dr.
8835 Balboa Ave. Suite 500
San Diego, CA 92123 San Diego, CA 92122

Dr. R. Linford Dr. A. Mondelli
Los Alamos Scientific Laboratory Science Applications, Inc.
P.O. Box 1663 1710 Goodridge Drive
Los Alamos, NM 87545 McLean, VA 22102

Dr. C.S. Liu or. Phillip Morton
Department of Physics Stanford Linear Accelerator Center
University of Maryland Stanford, CA 94305
College Park, MD 20742

Dr. M. Nahemow
Prof. R.V. Lovelace Westinghouse Electric Corporation
School of Applied and Eng. Physics 1310 Beutah Rd.
Cornell University Pittsburg, PA 15235
Ithaca, NY 14853

Prof. J. Nation
Dr. S.C. Luckhardt Lab. of Plasma Studies
Plasma Fusion Center Cornell University
M.I.T. Ithaca, NY 14850
Cambridge, MA 02139 Dr. V.K. Neil

Dr. J.E. Maenchen Lawrence Livermore National Laboratory
Division 1241 P.O. Box 808
Sandia National Lab. Livermore, CA 94550
Albuquerque, NM 87511

Dr. Gene Nolting
Prof. T. Marshall Naval Surface Weapons Center
School of Engineering and Applied Science White Oak Laboratory
Plasma Laboratory 10901 New Hampshire Ave.
S.W. Mudd Bldg. Silver Spring, MD 20903-5000
Columbia University
New York, NY 10027 Dr. C.L. Olson

Sandia Laboratory
Dr. M. Mazarakis Albuquerque, NM 87115
Sandia National Laboratory
Albuquerque, NM 87115 Dr. Arthur Paul

Lawrence Livermore National Laboratory
Dr. D.A. McArthur P.O. Box 808
Sandia National Laboratories Livermore, CA 94550
Albuquerque, NM 87115 Dr. S. Penner

Prof. J.E. McCune Institute of Technology and Standards
Dept. of Aero. and Astronomy Washington, D.C. 20234

M.I.T.
77 Massachusetts Ave.
Cambridge, MA 02139

27



Dr. Jack M. Peterson Philip E. Serafim

Lawrence Berkeley Laboratory Northeastern University

Berkeley, CA 94720 Boston, MA 02115

Dr. R. Post Dr. Andrew Sessler

Lawrence Livermore National Lab. Lawrence Berkeley National Lab

P.O. Box 808 Berkeley, CA 94720

Livermore, CA 94550
Dr. John Siambis

Dr. Kenneth Prestwich Lockheed

Sandia National Laboratory Palo Alto Research Lab

Albuquerque, NM 87115 3257 Hanover Street
Palo Alto, CA 94304

Dr. S. Prono
Los Alamos Scientific Lab. Dr. Adrian C. Smith

Los Alamos, NM 87544 Ballena Systems Corp.
1150 Ballena Blvd., Suite 210

Dr. Sid Putnam Alameda, CA 94501

Pulse Science, Inc.
600 McCormick Street Dr. Lloyd Smith

San Leandro, CA 94577 Lawrence Berkeley National Laboratory
Berkeley, CA 94720

Dr. Louis L. Reginato
Lawrence Livermore National Lab Dr. A. Sternlieb

P.O. Box 808 Lawrence Berkely National Laboratory

Livermore, CA 94550 Berkeley, CA 94720

Prof. N. Reiser Dr. D. Straw

Dept. of Physics and Astronomy W.J. Schafer Assoc.

University of Maryland 2000 Randolph Road, S.E., Suite A

College Park, MD 20742 Albuquerque, NM 87106

Dr. M.E. Rensink Prof. C. Striffler

Lawrence Livermore National Lab Dept. of Electrical Engineering

P.O. Box 808 University of Maryland

Livermore, CA 94550 College Park, MD 20742

Dr. D. Rej Prof. R. Sudan

Los Alamos Scientific Lab. Laboratory of Plasma Studies

Los Alamos, NM 87544 Cornell University
Ithaca, NY 14850

Dr. J.A. Rome
.Oak Ridge National Lab Dr. W. Tucker

Oak Ridge, TN 37850 Sandia National Laboratory
Albuquerque, NM 87115

Prof. Norman Rostoker
Dept. of Physics Dr. H. Uhm

University of California Naval Surface Weapons Center

Irvine, CA 92664 White Oak Laboratory
10901 New Hampshire Ave. Code R41

Prof. George Schmidt Silver Spring, MD 20903-5000

Physics Department
Stevens Institute of Tech. Dr. William Weldon

Hoboken, NJ 07030 University of Texas
Austin, TX 78758

28



Dr. Mark Wilson Naval Research Laboratory
Institute of Technology and Standards Washington, DC 20375-5000

Washington, DC 20234 Code 1220

Dr. P. Wilson Naval Research Laboratory
Stanford Linear Accelerator Center

Stanford, CA 94305 Washington, DC 20375-5000
Code 4830

Prof. C.B. Wharton Timothy Calderwood

303 N. Sunset Drive
Ithaca, NY 14850 Director of Research

U.S. Naval Academy

Dr. Gerald Yonas Annapolis, MD 21402

Sandia National Lab. (2 copies)

Albuquerque, NM 87115

West Defense Technical Information Center - 2 copies

NRL Code 1000 - 1 copy

NRL Code 10001 - 1 copy

NRL Code 2628 - 20 copies

NRL Code 4000 - I copy

NRL Code 4001 - 1 copy

NRL Code 4700 - 26 copies

Do NOT make labels for
NRI, Code 4701 - 1 copy Records---- (01 cy )

Code 4828--(22 cvs)
NRL Code 4790 - 1 copy

NRL Code 4795 - 40 copies

HAILING LIST/FOREIGN

Library
Institut fur Plasmaforschung
Universitat Stuttgart
Pfaffenvaldring 31
7000 Stuttgart 80, West Germany

Ken Takayama
KEN, TRISTAN Division
Oho, Tsukuba, Ibaraki, 305 JAPAN

29


