
Adventures
In

Performance

Thomas Dullien/Halvar Flake
 QCon London March 2023

19901980 2000 2010 2020

Moore’s Law Death of
Moore’s

Law

On-premise software
SaaS

On-premise hardware
Cloud

Single-core speedups of 25%-50% per year meant
that optimization made no economic sense

The cost of computing was paid by the user of the
software, who also provided the hardware.

Up-front CapEx for datacenters and hardware meant
that efficiency gains could not translate to savings.

New hardware no
longer pays for new

features.

Inefficient code cuts
directly into gross

margins.

Code that scales
nonlinearly also

scales cost
nonlinearly.

Why care about performance? (Business reasons)

19901980 2000 2010 2020

Moore’s Law Death of
Moore’s

Law

On-premise software
SaaS

On-premise hardware
Cloud

Performance
per dollar is
not growing

much.

Cost of
computing
moved to
software
vendors.

Efficiency gains
translate to $

saved.

Single-core speedups of 25%-50% per year meant
that optimization made no economic sense

The cost of computing was paid by the user of the
software, who also provided the hardware.

Up-front CapEx for datacenters and hardware meant
that efficiency gains could not translate to savings.

New hardware no
longer pays for new

features.

Inefficient code cuts
directly into gross

margins.

Code that scales
nonlinearly also

scales cost
nonlinearly.

After 40 years of relative unimportance,
efficiency is important again.

Why care about performance? (Business reasons)

Death of Moore: No more single core speedup

4

Death of Moore: No more falling transistor cost

Per-transistor unit costs are
not falling any more.

5

Importance of Gross Margins

● COGS for SaaS companies principally
consists of two components:
○ SRE’s
○ Cloud costs

● Improving Gross Margin from 70% to
80% adds the same to the valuation
as 2.5x ARR.

6

Why care about performance? (Personal reasons)

Fin

Economically
viable

Technically
interesting

Ideologically
aligned

Technically
interesting

Ideologically
aligned

Economically
viable

Most jobs:
Pick any two

Perf work:
Good alignment

My path: Spy vs. Spy security => Performance engineering

Full-stack computer science: From
high-level design to transistor

physics

Analyze large-scale legacy
codebases

Find a problem?
Pick your path:

Sell to highest
bidder, risk

helping MBS
someone

Be the bearer of
bad news who
interferes with

business

Full-stack computer science: From
high-level design to transistor

physics

Analyze large-scale legacy
codebases

Find a problem?

Code runs faster
Code runs cheaper

Code eats less energy

This talk:

Lessons learnt.

Anecdotes.

A bit all over the map.

I am still trying to extract the
narrative.

A few anecdotes…

Historical Organisational

TechnicalMathematical

Benchmarking is a statistical
nightmare

Your language is designed for
computers that are extinct

Your DB and application is
designed for computers that are

extinct

Your org chart matters

Companies cannot buy
something that has negative cost

Compilation time & tragedy of
the commons

Libraries dominate apps

GC is a (high) tax

A few anecdotes…

Historical Organisational

TechnicalMathematical

Benchmarking is a statistical
nightmare

Your DB and application is
designed for computers that are

extinct

Your org chart matters

Companies cannot buy
something that has negative cost

Compilation time & tragedy of
the commons

Libraries dominate apps

GC is a (high) tax

Your language is designed for
computers that are extinct

Timeline of the Java Programming Language

Java project
initiated at

Sun

The term “memory
wall” is coined.

Java is released.
Today, the memory

wall rules
everything.

100-200+ cycles for
a DRAM access.

1991

1994

1995 2023

Array-of-struct in C vs. Object[] in Java

Assumptions baked
into the language
● Traversing large linked graph

structures on the heap is a reasonable
thing to do (GC).

● Dereferencing a pointer does not
come with a significant performance
hit.

● Correct assumptions in 1991!

A few anecdotes…

Historical Organisational

TechnicalMathematical

Benchmarking is a statistical
nightmare

Your org chart matters

Companies cannot buy
something that has negative cost

Compilation time & tragedy of
the commons

Libraries dominate apps

GC is a (high) tax

Your language is designed for
computers that are extinct

Your DB and application are
designed for computers that are

extinct

Properties of spinning disks Properties of NVMe SSDs

● 150-180 IOPS

● Seeks are very expensive

● Layout on the disk important: Seek times
can be shorter when data is nearby

● Latency for seek/read in the multi-ms
range

● Little internal parallelism - just a few
seeks in the queue are useful

● Multiple threads contending the same
HDD will ruin performance as disk heads
need to seek between two places

● 170000 IOPS (1000x more!) - 11x EBS
gp2

● Seeks are very very cheap

● Internal row buffers

● Near-instant random writes (buffered by
internal DRAM)

● Latency for seek/read under 0.3ms

● Significant internal parallelism - queue
depth of 32-64 or higher necessary for
optimal performance

mmap and large
readaheads, fixed-size
thread pools
A surprising number of storage
systems follow this pattern:

● Fixed-size threadpools (~#cores)
● mmap-backed storage
● Reliance on large readaheads

Makes (some amount) of sense if you
are on a spinning disk.

● Servicing a page-fault is inherently blocking I/O
● Takes ~0.3ms to do end-to-end handling (thread resumes)
● A single thread can thus only originate 3000 IOPS, tops
● To saturate a 170k IOPS drive, you need 56 threads constantly

hitting page faults (!)

● For blocking I/O, thread pools are usually too small, and the net
result is a system that is slow, and nobody knows why (CPU
and disks are both twiddling thumbs)

Pathology of that approach

Feeding the beast
Modern SSDs are
performance beasts, and
you need to think carefully
about the best way to feed
them.

● Cloud-attached storage is an entirely different beast
○ HDD: High-latency, low concurrency
○ SSD: Low-latency, high concurrency
○ Cloud-storage: High-latency, extremely high concurrency

● Very few DBMS are optimized to operate in the “high-latency,
near limitless concurrency” paradigm.

● Don’t expect the same codebase to be useful for all three
paradigms.

What about “cloud SSD”?

A few lessons…

Historical Organisational

TechnicalMathematical

Benchmarking is a statistical
nightmare

Your org chart matters

Companies cannot buy
something that has negative cost

Compilation time & tragedy of
the commons

GC is a (high) tax

Your DB and application is
designed for computers that are

extinct

Your language is designed for
computers that are extinct

Libraries dominate apps

Common libraries quickly
dominate the largest app
There’s a finite number of pieces of code
that globally eat the most CPU:

● Garbage collectors
● Allocators
● Compression (zlib etc.)
● FFMpeg etc.

In almost every large-sized org, the CPU
cost of a common library will eclipse the
cost of the most heavyweight app.

● Dream for optimyze was a global profiling SaaS
● Global view on which code eats CPU time

If you have a global view on which code eats CPU time, you can
create bug bounties for FOSS libraries:

● “Improve this loop, earn $50k”
● Global savings for all users can be many million $

Unrealized vision: Performance
bug bounties on GitHub

A few anecdotes…

Historical Organisational

TechnicalMathematical

Benchmarking is a statistical
nightmare

Your DB and application is
designed for computers that are

extinct

Your org chart matters

Companies cannot buy
something that has negative cost

Compilation time & tragedy of
the commons

Libraries dominate apps

Your language is designed for
computers that are extinct

GC is a (high) tax

● Common libraries dominate apps
● GC is part of every app in a given runtime
● GC is expensive because traversing graphs on the heap is bad

for locality

Common to see 10-20% of all CPU cycles in garbage collection (!)

GC is a high tax

“When we need to
reduce CPU usage, we
do memory profiling”
Anonymous high-ranking engineer at
Ride-Sharing company

● Java folks become experts at tuning GCs
● High-performance Java folks become experts at avoiding

allocations altogether
● Go folks end up analyzing the results of the escape analysis

Don’t worry about memory management, they said. The garbage
collector will do it for you, they said.

Rust gave the most important contribution:
“You can have memory safety without having to have a GC.”

Wrestling the GC is
commonplace

A few lessons…

Historical Organisational

TechnicalMathematical

Benchmarking is a statistical
nightmare

Companies cannot buy
something that has negative cost

Compilation time & tragedy of
the commons

GC is a (high) tax

Your DB and application is
designed for computers that are

extinct

Your language is designed for
computers that are extinct

Libraries dominate apps

Your org chart matters

Horizontal vs vertical emphasis in organisation

Google: Strong vertical, very prescriptive, big monorepo, big services

Other places: More horizontal orientation, two pizza teams, separate repos & infra

Horizontal emphasis is for
flexibility, vertical is for
efficiency
Vertical organisations:

● Identify performance hog
● Fix the library
● Reap benefits everywhere

Horizontal organisations:

● Identify performance hog
● Work with 100+ teams to get the

change integrated into 100
repos/places

A few anecdotes…

Historical Organisational

TechnicalMathematical

Benchmarking is a statistical
nightmare

Your DB and application is
designed for computers that are

extinct

Your org chart matters

Libraries dominate apps

Temporal dependencies are bad

Your language is designed for
computers that are extinct

“Stupid is beautiful”

GC is a (high) tax

Compilation time & tragedy of
the commons

Companies cannot buy
something that has negative cost

Performance work lends itself to value-based pricing
(cut-of-savings). Unfortunately, lots of technical and legal hurdles:

● Nobody knows how to budget for a contract that has
guaranteed net-negative-cost, accounting goes crazy.

● Legal departments are skittish because they don’t know what
the legal exposure is (in terms of $).

“You may be able to do this if you’re Bain and have golfed with the
CEO for 2 decades, but not as a startup.”

Cut-of-savings contracts fail on
accounting & legal hurdles

A few anecdotes…

Historical Organisational

TechnicalMathematical

Benchmarking is a statistical
nightmare

Your DB and application is
designed for computers that are

extinct

Your org chart matters

Companies cannot buy
something that has negative cost

Libraries dominate apps

Your language is designed for
computers that are extinct

GC is a (high) tax

Compilation time & tragedy of
the commons

● Go compiler devs are zealous about this
● Upstream package builders have limited computational resources

Tragedy of the commons:

● If a library runs on 1000 cores for 1 year, 1% performance
improvement are worth 10 core-years.

● It would make global sense to compile certain heavy libraries (zlib
etc.) for weeks if 1% extra perf could be obtained.

The person compiling the code has no incentive to speed up everybody’s
binary. Classical tragedy of the commons.

Nobody likes long
compilation times

● Upstream packages are compiled for the lowest-common
denominator

● Your cloud instance almost certainly has a newer uArch

You can often get measurable speedups by rebuilding for your
uArch. Complication: Cloud instances don’t map 1:1 to uArch.

(I wish mainstream Linux distros would have uArch-specific
packages.)

On x86_64, everybody compiles
for the wrong uArch

A few lessons…

Historical Organisational

TechnicalMathematical

Your DB and application is
designed for computers that are

extinct

Your org chart matters

Libraries dominate apps

Your language is designed for
computers that are extinct

Companies cannot buy
something that has negative cost

GC is a (high) tax

Compilation time & tragedy of
the commons

Benchmarking is a statistical
nightmare

In theory, every organisation would want benchmarks to run as part
of CI/CD, to help improve performance and prevent performance
regressions.

In theory, determining “does this change make my code faster”
should be easy to do, right? I mean, classical statistical hypothesis
testing, right?

In practice, it is super rare to see an organisation that runs
statistically sound benchmarks in CI/CD that aren’t plagued by a
dozen validity problems. (good examples: Clickhouse and Mongo)

Benchmarking is a statistical
nightmare

High variance in measurements means it is harder to tell if your
change improves things, but people do not fear variance enough.

Problem 1: Variance is your enemy,
particularly for small effect sizes

…

Problem 2: Does this look
normal to you?

Memory hierarchies, caches etc. all create complicated multi-modal and pathological distributions.
Goodbye parametric testing :-/ and therefore goodbye sample efficiency.

Running a benchmark multiple times “trains” the various predictors. Solution:
Random interleaving of benchmark runs. [1]

Frequency boosts and -scaling happens.

Problem 3: CPU internals mean
your benchmark runs aren’t IID

https://github.com/google/benchmark/issues/1051

● ASLR can interact poorly with caches, causing +/- 10% noise
for particularly unlucky memory layouts

● Cloud instances can have noisy neighbors that run cache
benchmarks or accidentally exhaust memory bandwidth

Problem 4: ASLR, caches, noisy
neighbors on cloud instances

● Running single-tenant on bare metal and disabling frequency
scaling controls variance.

● Unfortunately, your measurements are no longer
representative of what happens in production.

Problem 5: Controlling for all of
these means you’re not measuring

what matters

● Approximately nobody has statistically reliable benchmarks
that show improvement or regression on CI/CD

● Cost of running enough experiments on commit to establish
“this makes something faster” with small-enough confidence
interval is often prohibitive

● Overall seems to not bother anyone :-)

Results

● MongoDB have written candidly about their work here: [2]

● Clickhouse have written candidly about their work here: [3]

● Andrey Akinshin has an excellent (if heavy) blog on
nonparametric statistics for performance here: [4]

Resources

https://www.mongodb.com/blog/post/using-change-point-detection-find-performance-regressions
https://clickhouse.com/blog/testing-the-performance-of-click-house
https://aakinshin.net/about/

Concrete advice?
What are the takeaways from
all of these lessons?

Advice to the practitioner

1. Know your napkin math.
Almost all performance analysis begins by identifying a discrepancy between
what napkin math says and what happens in real systems. “This should not
be slow” is the start of most adventures.

2. Accept that tooling is nascent and disjoint.
I ended up starting a company because I needed a simple fleet-wide CPU
profiler. The tools you need are nascent and ill-fitting.

3. Always measure.
Performance problems are almost always a murder mystery, and quite often
the perpetrator is not the usual suspect.

4. So. Many. Low. Hanging. Fruit.
Most environments leave 20-30%+ of easy wins on the table. That’s real
money.

Technical

Advice to the practitioner

1. Try to establish a north-star metric
For digital goods providers, you really want to work toward a
“cost-per-unit-served”. Fixes incentives.

2. Dedicated teams and “optimization weeks” have good results
Doing a “hack week” focused on identifying and fixing low-hanging fruit
yields good results.
Dedicated optimization teams can really pay for themselves in larger orgs.

3. Few other areas on software engineering have such clear success metrics.
Many engineers enjoy the clarity and game-like nature.

4. The organisational importance will only grow over time.
With the end of free money, margins matter, and I would not be surprised if
efficiency becomes a board-level topic on par with security etc.

Organisational

Advice to the practitioner

1. Methods of last resort are your first resort :-(
Pathologies of the underlying distributions force use of non-parametric
methods.

2. Low statistical power of these tests requires many runs to obtain
reasonable confidence bounds
Cost of doing scientifically sound benchmarking might be too high to do on
each commit.

Mathematical

Advice to the practitioner

1. Be aware of drastic changes in computer “geometry”
A 1000x increase in IOPS, a change in cost for a previously-expensive
operation, a change in SotA for data compression has drastic downstream
effects.

2. Code and configs outlive hardware, often by decades
Code either gets replaced quickly or lives almost forever. 90% of the code
you write today will be gone in 5 years, and 10% will still be there in 20
years. I guess that approximately all tuning parameters older than 3 years
are wrong.

Historical

Technical outlook?
What tools are missing? If I
could dream, what tools
would I want?

Diagnosing performance issues currently requires integrating
different tools:

● CPU and memory profilers
● Distributed tracing
● Data from the OS scheduler about threads
● (...)

Visualisation and UI for these things is disjoint, not performant, and
generally janky.

All that, and a pony

There are different tools I wish I had, for different purposes:

● CO2 reduction:
○ Global profiling SaaS database with a statistically significant sample of all workloads in the world (FOSS

performance bounties)

● Cost accounting:
○ Profiling of CPU, IO, network traffic to assign resources to code
○ Integration with a metric about “units served” to calculate cost breakdown

● Latency analysis:
○ Combination of CPU profiling, distributed tracing, and scheduler events, all tied together over the network,

with zero deployment friction and negligible impact
○ GPU-accelerated UI to visualize that data in time (Perfetto++)

● Cluster-wide truly causal profiling:
○ Some approaches to causal profiling (“which line of code needs to be made faster”) exist (Coz etc.)
○ “Not causal enough” (can’t tell me for example that I am hitting too many page faults)
○ Not cluster-wide
○ “Why is this request slow?” / “Why is this request expensive?”

Big hurdle to adoption is deployment friction. Frictionless needs to be the goal.

The tools I wish I had

Ok … and now?

What’s next?

Questions?

March 27-29, 2023

`

March 27-29, 2023

`

