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per dollar is 
not growing 

much.
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software 
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Single-core speedups of 25%-50% per year meant 
that optimization made no economic sense

The cost of computing was paid by the user of the 
software, who also provided the hardware.

Up-front CapEx for datacenters and hardware meant 
that efficiency gains could not translate to savings.

New hardware no 
longer pays for new 

features.

Inefficient code cuts 
directly into gross 

margins.

Code that scales 
nonlinearly also 

scales cost 
nonlinearly.

After 40 years of relative unimportance, 
efficiency is important again.

Why care about performance? (Business reasons)



Death of Moore: No more single core speedup
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Death of Moore: No more falling transistor cost

Per-transistor unit costs are 
not falling any more.
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Importance of Gross Margins

● COGS for SaaS companies principally 
consists of two components:
○ SRE’s
○ Cloud costs

● Improving Gross Margin from 70% to 
80% adds the same to the valuation 
as 2.5x ARR.
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Why care about performance? (Personal reasons)

Fin

Economically 
viable

Technically
interesting

Ideologically
aligned

Technically
interesting

Ideologically
aligned

Economically
viable

Most jobs:
Pick any two

Perf work:
Good alignment



My path: Spy vs. Spy security => Performance engineering

Full-stack computer science: From 
high-level design to transistor 

physics

Analyze large-scale legacy 
codebases

Find a problem?
Pick your path:

Sell to highest 
bidder, risk 

helping MBS 
someone

Be the bearer of 
bad news who 
interferes with 

business

Full-stack computer science: From 
high-level design to transistor 

physics

Analyze large-scale legacy 
codebases

Find a problem?

Code runs faster
Code runs cheaper

Code eats less energy





This talk:

Lessons learnt.

Anecdotes.

A bit all over the map.

I am still trying to extract the 
narrative.
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Your language is designed for 
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Your org chart matters

Companies cannot buy 
something that has negative cost

Compilation time & tragedy of 
the commons

Libraries dominate apps

GC is a (high) tax
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Timeline of the Java Programming Language

Java project 
initiated at 

Sun

The term “memory 
wall” is coined.

Java is released.
Today, the memory 

wall rules 
everything.

100-200+ cycles for 
a DRAM access.

1991

1994

1995 2023



Array-of-struct in C vs. Object[] in Java



Assumptions baked 
into the language
● Traversing large linked graph 

structures on the heap is a reasonable 
thing to do (GC).

● Dereferencing a pointer does not 
come with a significant performance 
hit.

● Correct assumptions in 1991!
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Properties of spinning disks Properties of NVMe SSDs

● 150-180 IOPS

● Seeks are very expensive

● Layout on the disk important: Seek times 
can be shorter when data is nearby

● Latency for seek/read in the multi-ms 
range

● Little internal parallelism - just a few 
seeks in the queue are useful

● Multiple threads contending the same 
HDD will ruin performance as disk heads 
need to seek between two places

● 170000 IOPS (1000x more!) - 11x EBS 
gp2

● Seeks are very very cheap

● Internal row buffers

● Near-instant random writes (buffered by 
internal DRAM)

● Latency for seek/read under 0.3ms

● Significant internal parallelism - queue 
depth of 32-64 or higher necessary for 
optimal performance



mmap and large 
readaheads, fixed-size 
thread pools
A surprising number of storage 
systems follow this pattern:

● Fixed-size threadpools (~#cores)
● mmap-backed storage
● Reliance on large readaheads

Makes (some amount) of sense if you 
are on a spinning disk.



● Servicing a page-fault is inherently blocking I/O
● Takes ~0.3ms to do end-to-end handling (thread resumes)
● A single thread can thus only originate 3000 IOPS, tops
● To saturate a 170k IOPS drive, you need 56 threads constantly 

hitting page faults (!)

● For blocking I/O, thread pools are usually too small, and the net 
result is a system that is slow, and nobody knows why (CPU 
and disks are both twiddling thumbs)

Pathology of that approach



Feeding the beast
Modern SSDs are 
performance beasts, and 
you need to think carefully 
about the best way to feed 
them.



● Cloud-attached storage is an entirely different beast
○ HDD: High-latency, low concurrency
○ SSD: Low-latency, high concurrency
○ Cloud-storage: High-latency, extremely high concurrency

● Very few DBMS are optimized to operate in the “high-latency, 
near limitless concurrency” paradigm.

● Don’t expect the same codebase to be useful for all three 
paradigms.

What about “cloud SSD”?
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Common libraries quickly 
dominate the largest app
There’s a finite number of pieces of code 
that globally eat the most CPU:

● Garbage collectors
● Allocators
● Compression (zlib etc.)
● FFMpeg etc.

In almost every large-sized org, the CPU 
cost of a common library will eclipse the 
cost of the most heavyweight app.



● Dream for optimyze was a global profiling SaaS
● Global view on which code eats CPU time

If you have a global view on which code eats CPU time, you can 
create bug bounties for FOSS libraries:

● “Improve this loop, earn $50k”
● Global savings for all users can be many million $

Unrealized vision: Performance 
bug bounties on GitHub
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● Common libraries dominate apps
● GC is part of every app in a given runtime
● GC is expensive because traversing graphs on the heap is bad 

for locality

Common to see 10-20% of all CPU cycles in garbage collection (!)

GC is a high tax



“When we need to 
reduce CPU usage, we 
do memory profiling”
Anonymous high-ranking engineer at 
Ride-Sharing company



● Java folks become experts at tuning GCs
● High-performance Java folks become experts at avoiding 

allocations altogether
● Go folks end up analyzing the results of the escape analysis

Don’t worry about memory management, they said. The garbage 
collector will do it for you, they said.

Rust gave the most important contribution: 
“You can have memory safety without having to have a GC.”

Wrestling the GC is 
commonplace
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Horizontal vs vertical emphasis in organisation



Google: Strong vertical, very prescriptive, big monorepo, big services



Other places: More horizontal orientation, two pizza teams, separate repos & infra



Horizontal emphasis is for 
flexibility, vertical is for 
efficiency
Vertical organisations:

● Identify performance hog
● Fix the library
● Reap benefits everywhere

Horizontal organisations:

● Identify performance hog
● Work with 100+ teams to get the 

change integrated into 100 
repos/places
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Performance work lends itself to value-based pricing 
(cut-of-savings). Unfortunately, lots of technical and legal hurdles:

● Nobody knows how to budget for a contract that has 
guaranteed net-negative-cost, accounting goes crazy.

● Legal departments are skittish because they don’t know what 
the legal exposure is (in terms of $).

“You may be able to do this if you’re Bain and have golfed with the 
CEO for 2 decades, but not as a startup.”

Cut-of-savings contracts fail on 
accounting & legal hurdles
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● Go compiler devs are zealous about this
● Upstream package builders have limited computational resources

Tragedy of the commons:

● If a library runs on 1000 cores for 1 year, 1% performance 
improvement are worth 10 core-years.

● It would make global sense to compile certain heavy libraries (zlib 
etc.) for weeks if 1% extra perf could be obtained.

The person compiling the code has no incentive to speed up everybody’s 
binary. Classical tragedy of the commons.

Nobody likes long 
compilation times



● Upstream packages are compiled for the lowest-common 
denominator

● Your cloud instance almost certainly has a newer uArch

You can often get measurable speedups by rebuilding for your 
uArch. Complication: Cloud instances don’t map 1:1 to uArch.

(I wish mainstream Linux distros would have uArch-specific 
packages.)

On x86_64, everybody compiles 
for the wrong uArch
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In theory, every organisation would want benchmarks to run as part 
of CI/CD, to help improve performance and prevent performance 
regressions.

In theory, determining “does this change make my code faster” 
should be easy to do, right? I mean, classical statistical hypothesis 
testing, right?

In practice, it is super rare to see an organisation that runs 
statistically sound benchmarks in CI/CD that aren’t plagued by a 
dozen validity problems. (good examples: Clickhouse and Mongo)

Benchmarking is a statistical 
nightmare



High variance in measurements means it is harder to tell if your 
change improves things, but people do not fear variance enough.

Problem 1: Variance is your enemy, 
particularly for small effect sizes



…

Problem 2: Does this look 
normal to you?

Memory hierarchies, caches etc. all create complicated multi-modal and pathological distributions.
Goodbye parametric testing :-/ and therefore goodbye sample efficiency.



Running a benchmark multiple times “trains” the various predictors.  Solution: 
Random interleaving of benchmark runs. [1]

Frequency boosts and -scaling happens.

Problem 3: CPU internals mean 
your benchmark runs aren’t IID

https://github.com/google/benchmark/issues/1051


● ASLR can interact poorly with caches, causing +/- 10% noise 
for particularly unlucky memory layouts

● Cloud instances can have noisy neighbors that run cache 
benchmarks or accidentally exhaust memory bandwidth

Problem 4: ASLR, caches, noisy 
neighbors on cloud instances



● Running single-tenant on bare metal and disabling frequency 
scaling controls variance.

● Unfortunately, your measurements are no longer 
representative of what happens in production.

Problem 5: Controlling for all of 
these means you’re not measuring 

what matters



● Approximately nobody has statistically reliable benchmarks 
that show improvement or regression on CI/CD

● Cost of running enough experiments on commit to establish 
“this makes something faster” with small-enough confidence 
interval is often prohibitive

● Overall seems to not bother anyone :-)

Results



● MongoDB have written candidly about their work here: [2]

● Clickhouse have written candidly about their work here: [3]

● Andrey Akinshin has an excellent (if heavy) blog on 
nonparametric statistics for performance here: [4]

Resources

https://www.mongodb.com/blog/post/using-change-point-detection-find-performance-regressions
https://clickhouse.com/blog/testing-the-performance-of-click-house
https://aakinshin.net/about/


Concrete advice?
What are the takeaways from 
all of these lessons?



Advice to the practitioner

1. Know your napkin math.
Almost all performance analysis begins by identifying a discrepancy between 
what napkin math says and what happens in real systems. “This should not 
be slow” is the start of most adventures.

2. Accept that tooling is nascent and disjoint.
I ended up starting a company because I needed a simple fleet-wide CPU 
profiler. The tools you need are nascent and ill-fitting.

3. Always measure.
Performance problems are almost always a murder mystery, and quite often 
the perpetrator is not the usual suspect.

4. So. Many. Low. Hanging. Fruit.
Most environments leave 20-30%+ of easy wins on the table. That’s real 
money.

Technical



Advice to the practitioner

1. Try to establish a north-star metric
For digital goods providers, you really want to work toward a 
“cost-per-unit-served”. Fixes incentives.

2. Dedicated teams and “optimization weeks” have good results
Doing a “hack week” focused on identifying and fixing low-hanging fruit 
yields good results.
Dedicated optimization teams can really pay for themselves in larger orgs.

3. Few other areas on software engineering have such clear success metrics.
Many engineers enjoy the clarity and game-like nature.

4. The organisational importance will only grow over time.
With the end of free money, margins matter, and I would not be surprised if 
efficiency becomes a board-level topic on par with security etc.

Organisational



Advice to the practitioner

1. Methods of last resort are your first resort :-(
Pathologies of the underlying distributions force use of non-parametric 
methods.

2. Low statistical power of these tests requires many runs to obtain 
reasonable confidence bounds
Cost of doing scientifically sound benchmarking might be too high to do on 
each commit.

Mathematical



Advice to the practitioner

1. Be aware of drastic changes in computer “geometry”
A 1000x increase in IOPS, a change in cost for a previously-expensive 
operation, a change in SotA for data compression has drastic downstream 
effects.

2. Code and configs outlive hardware, often by decades
Code either gets replaced quickly or lives almost forever. 90% of the code 
you write today will be gone in 5 years, and 10% will still be there in 20 
years. I guess that approximately all tuning parameters older than 3 years 
are wrong.

Historical



Technical outlook?
What tools are missing? If I 
could dream, what tools 
would I want?



Diagnosing performance issues currently requires integrating 
different tools:

● CPU and memory profilers
● Distributed tracing
● Data from the OS scheduler about threads
● (...)

Visualisation and UI for these things is disjoint, not performant, and 
generally janky.

All that, and a pony



There are different tools I wish I had, for different purposes:

● CO2 reduction: 
○ Global profiling SaaS database with a statistically significant sample of all workloads in the world (FOSS 

performance bounties)

● Cost accounting:
○ Profiling of CPU, IO, network traffic to assign resources to code
○ Integration with a metric about “units served” to calculate cost breakdown

● Latency analysis:
○ Combination of CPU profiling, distributed tracing, and scheduler events, all tied together over the network, 

with zero deployment friction and negligible impact
○ GPU-accelerated UI to visualize that data in time (Perfetto++)

● Cluster-wide truly causal profiling:
○ Some approaches to causal profiling (“which line of code needs to be made faster”) exist (Coz etc.)
○ “Not causal enough” (can’t tell me for example that I am hitting too many page faults)
○ Not cluster-wide
○ “Why is this request slow?” / “Why is this request expensive?”

Big hurdle to adoption is deployment friction. Frictionless needs to be the goal.

The tools I wish I had



Ok … and now?

What’s next?



Questions?
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