
Main Law Cafe P a g e | 1 Confidential

Q.Cloud AI Chain Reaction Algorithm™

Provisional Patent Application Specification

Inventor: Steven Leonard

Background

 There is yet to be a "quick" P-versus-NP Solution by a

practical computer system. Such asks whether every language

accepted by a non-deterministic algorithm in polynomial time is

one that is also accepted by any deterministic algorithm in

polynomial time. The Problem essentially explores what are the

fundamental limits of feasible computation.

 Stephen Cook (University of Toronto) wrote in his Article,

"THE P VERSUS NP PROBLEM", that with regard to the P-versus-NP

problem experience teaches that when natural problems are proven

to be in P, a feasible algorithm can be found. (Otherwise, the

proof is nonconstructive, no algorithm can be yielded for the NP-

complete problem, and no practical uses.) Problems that can be

shown to be NP-complete can be thereafter reduced to deciding

whether a collection of propositional clauses has a satisfying

assignment. Feasible algorithms mean practical computer systems

can be pressed into service in advanced artificial intelligence

applications, e.g., problems in optimization like credit scoring

versus profits. But such would also render complexity based

cryptography useless. The security of the Internet, for example,

depends on the infeasibility of code-breaking solutions. In

Main Law Cafe P a g e | 2 Confidential

general, inventing efficient algorithms has been much easier than

proving algorithms do not exist.

 Cook alleges that the standard computer model in

computability theory is the Turing machine. Although the model was

introduced before any computers were ever built, it nevertheless

continues to be accepted as the Model for the defining of a

computable function. Informally, a class P is a class of decision

problems that can be solvable by an algorithm within a number of

steps that are bounded by a fixed polynomial in the length of the

input. Turing's concern was not with the efficiency of the

machines, but whether such machines could simulate arbitrary

algorithms if given sufficient time.

 Turing machines with unlimited memory can generally simulate

more efficient computer models, at most squaring or cubing the

required computation time. Thus P is a robust class and has

equivalent definitions over a large class of computer models.

 There is a standard practice in defining the class P in Turing

machines. Formally, the elements of the class P are languages. Let

∑ be a finite alphabet (that is, a finite nonempty set) with at

least two elements, and let ∑* be the set of finite strings over

∑. Then a language over ∑ is a subset L of ∑. Each Turing machine

M has an associated input alphabet ∑. For each string w in ∑ there

is a computation associated with M with input w. (The notions of

Turing machine and computation are defined formally in the

appendix.)

 M accepts w if a computation terminates in the accepting

state. M fails to accept w either if this computation ends in the

rejecting state, or if the computation fails to terminate. The

language accepted by M, denoted L(M), has associated alphabet ∑

and is defined by L(M) = {w 2 ∑ | M accepts w}. Cook denotes by

tM(w) the number of steps in the computation of M on input w. If

this computation never halts, then tM(w) = 1. For n 2 N he denotes

by TM(n) the worst case run time of M. That is, TM(n) = max{tM(w)

Main Law Cafe P a g e | 3 Confidential

| w 2 _n}, where _n is the set of all strings over ∑ of length n.

M runs in polynomial time if there exists k such that for all n,

TM(n) ∑ nk + k.

 The class P of languages is defined by P = {L|L = L(M) for

some Turing machine M that runs in polynomial time}. The notation

NP stands for “non-deterministic polynomial time”, since

originally NP was defined in terms of non-deterministic machines

that have more than one possible move from a given configuration.

It is now customary to give an equivalent definition using the

notion of a checking relation, which is simply a binary relation

 for some finite alphabets ∑ and ∑1. Each is associated

such relation R a language LR over ∑ [∑1 [{#} defined by LR =

{w#y | R(w, y)} where the symbol # is not in ∑. R is polynomial-

time if LR 2 P.

 The class NP of languages is defined by the condition that a

language L over ∑ is in NP if there is k 2 N and a polynomial-time

checking relation R such that for all w 2 ∑, w 2 L () 9y(|y| ∑

|w|k and R(w, y)), where |w| and |y| denote the lengths of w and

y, respectively.

 Problem Statement: Does P = NP?

The so-called binary P versus NP Problem is a major unsolved

Problem in computer science. It asks if a Problem whose solution

can be verified by a computer can also be solved by a computer.

 The Quantum Cloud (Q.Cloud) Artificial Intelligence (AI)

technology outlined here is intended to both verify a solution to

a Problem and to solve the Problem, e.g., with the Chain Reaction

Algorithm™. It not only checks a solution to a Problem for

correctness, it solves the Problem at the same time.

 Q.Cloud parallel processing is a technique duplicating

function 248 Data Centers worldwide to operate different tasks

(signals) simultaneously. The same processing is used for

Main Law Cafe P a g e | 4 Confidential

different signals on each corresponding duplicated-function Data

Center unit. Using such parallel processing, each parallel Data

Center unit design leverages its multiple outputs for higher

throughput.

 Fifty-six Data Centers in the USA and territories and 192

more abroad increase the overall power, speed and efficiency. Each

of these Data Centers operating at 40 Petaflops can not only check

for a parallel solution to a Problem for correctness, they’ll also

work together in harmony to solve the Problem in polynomial time.

The Chain Reaction Algorithm will continue to search for a better

solution for the rest of eternity.

 (more unsolved problems in binary computer science)

 Millennium Prize Problems

 P versus NP Problem

 Hodge conjecture

 Poincaré conjecture (solved)

 Riemann hypothesis

 Yang–Mills existence and mass gap

 Navier–Stokes existence and smoothness

Main Law Cafe P a g e | 5 Confidential

 Birch and Swinnerton-Dyer conjecture

 Diagram of complexity classes provided that binary P ≠ NP.

The existence of problems within NP but outside both P and NP-

complete, under that assumption, was established by Ladner's

theorem.

 Q.Cloud AI can solve this Problem. Q.Cloud AI can solve a

Problem in real-time. As it solves P=NP, it continues to solve an

increasing number of Solutions to a Problem in real-time forever.

 The Matrix continuously issues new Answers to a given Problem,

non-stop. Once the AI solves a Problem and provides a user with an

Answer, it continues finding better Answers to the standing

Problem. The AI begins an infinite mathematics Chain Reaction

Algorithm™ and it will eventually become self-aware as it travels

down the eternal path of solving more complex problems over the

time space continuum.

 The algorithm will evolve over time to solve problems in

disease, death, famine and space travel. Current binary systems

cannot be used in solving these problems, since there is no such

thing as zeros and ones in the real world. The number 1 can only

be measured in a Chain Reaction Algorithm that unleashes the power

of infinite mathematics and eternal technology found inside the

nucleus of a single electron.

Main Law Cafe P a g e | 6 Confidential

 It was essentially first mentioned in a 1956 letter written

by Kurt Gödel to John von Neumann. Gödel asked whether a certain

binary NP-complete Problem could be solved in binary quadratic or

linear time. The precise statement of the binary P versus NP

Problem was introduced in 1971 by Stephen Cook in his seminal paper

"The complexity of theorem proving procedures” and is considered

by many to be the most important open Problem in the field. It is

one of the seven Millennium Prize Problems selected by the Clay

Mathematics Institute to carry a US$1,000,000 prize for the first

correct solution.

 The informal term quickly, used above, means the existence of

a Q.Cloud AI Chain Reaction Algorithm for the task that runs in

photonic wavelength polynomial time, i.e., that the time to

complete the task varies as a polynomial function on the size of

the input to the Chain Reaction Algorithm (as opposed to, say

exponential time). The general class of questions for which some

binary algorithms can provide an Answer in binary polynomial time

is called "class P" or just "P". For some questions, there is no

known way to find an Answer quickly, but if one is provided with

information showing what the Answer is, it is possible to verify

the Answer quickly. The class of questions for which an Answer can

be verified in binary polynomial time is called binary NP, which

stands for "binary non-deterministic polynomial time. Q Cloud AI

Chain Reaction Algorithm can not only verify an Answer quickly; it

will also continue to search for an alternate solution. It will

never STOP searching for an increasing number of Answers to solve

a single Problem.

 It will continue to move forward in time and search of

parallel Answers and Solutions to complex problems.

 Consider the binary subset sum Problem, an example of a

Problem that is easy to verify, but whose Answer may be difficult

to compute. Given a set of binary integers, does some nonempty

binary

Main Law Cafe P a g e | 7 Confidential

 subset of them sum to 0? For instance, does a binary subset

of the set {−2, −3, 15, 14, 7, −10} add up to 0? The Answer "yes,

because the subset {−2, −3, −10, 15} adds up to zero" can be

verified with three additions. There is currently no known

algorithm to find such a binary subset in binary polynomial time

(there is one, however, in photonic wavelength exponential time,

which consists of 2n-n-1 tries), but Q.Cloud AI Chain Reaction

Algorithm exists if P = NP; hence this Problem is in NP (checkable)

and also in P (solvable). Once the Problem is solved in a photonic

wavelength exponential time, it will continue forward in time

searching for parallel Solutions to complex problems. It will never

CEASE verifying and solving problems in photonic wavelength

polynomial time.

 An Answer to the binary P = NP question would determine

whether problems that can be verified in binary polynomial time,

like the binary subset-sum Problem, can be solved in photonic

wavelength polynomial time. If it turned out that binary P ≠ NP,

it would mean that there are problems in NP (such as NP-complete

problems) that are harder to compute than to verify: they could

not be solved in binary polynomial time, but the Answer could be

verified in photonic wavelength polynomial time. Q.Cloud AI has

the ability to solve and verify problems in polynomial time.

 Aside from being an important Problem in computational

theory, a Q.Cloud AI proof either way would have profound

implications for mathematics, cryptography, algorithm research,

Q.Cloud artificial intelligence, game theory, multimedia

processing, philosophy, economics and many other fields.

 The relation between the complexity classes binary P and NP

is studied in binary computational complexity theory, the part of

the binary theory of computation dealing with the resources

required during binary computation to solve a given Problem. The

most common resources are time (how many steps it takes to solve

a Problem) and space (how much binary memory it takes to solve a

Main Law Cafe P a g e | 8 Confidential

Problem). Q.Cloud AI has the resources required during computation

to solve a given Problem. Q.Cloud AI not only has real time

computation to solve a Problem in real time but will continue to

provide a Chain Reaction Algorithm expansion (An Algorithm similar

to the explosion of a nuclear bomb) that will continue on its

search for infinite parallel Solutions forever.

 In such analysis, a model of the Q.Cloud AI Computer for which

time must be analyzed is required. Typically, such models assume

that Q.Cloud computer would be a photonic wavelength deterministic

(given the computer's present state and inputs, there is only one

possible action that the computer might take) and sequential (it

performs actions one after the other for the rest of eternity).

 In this theory, the non-binary class P consists of all those

decision problems (defined below) that can be solved on a

deterministic sequential Q.Cloud AI machine in an amount of time

that is non-binary polynomial in the size of the input; the class

NP consists of all those decision problems whose positive infinite

Solutions can be verified in non-binary polynomial time given the

right information, or equivalently, whose infinite Solutions can

be found in non-binary polynomial time in a photonic wavelength

non-deterministic machine. Clearly, P ⊆ NP. Arguably the biggest

open question in theoretical computer science concerns the

relationship between those two classes:

 Is P equal to NP? The theorem is that ONLY in a non-binary

deterministic and in photonic wavelength non deterministic

polynomial time can P equal to NP.

 NP-complete – ONLY in a Q.Cloud AI environment!

Main Law Cafe P a g e | 9 Confidential

 To attack the binary P = NP question, the concept of binary

NP-completeness is very useful. Binary NP-complete problems are a

set of binary problems to each of which other binary NP-Problem

can be reduced in binary polynomial time, and whose solution may

still be verified in binary polynomial time. That is, a binary NP

Problem can be transformed into a set of the binary NP-complete

problems. Informally, a binary NP-complete Problem is a binary NP

Problem that is at least as "tough" as another Problem in binary

NP.

 Binary NP-hard problems are those at least as hard as binary

NP problems, i.e., all binary NP problems can be reduced (in binary

polynomial time) to them. Binary NP-hard problems need not be in

binary NP, i.e., they need not have Solutions verifiable in binary

polynomial time.

 For instance, the binary Boolean Satisfiability Problem is

binary NP-complete by the binary Cook–Levin theorem, so an instance

of a Problem in binary NP can be transformed mechanically into an

instance of the binary Boolean Satisfiability Problem in binary

polynomial time. The binary Boolean Satisfiability Problem is one

of many such binary NP-complete problems. If a binary NP-complete

Problem is in P, then it would follow that binary P = NP. However,

many important problems have been shown to be binary NP-complete,

and no fast algorithm for any of them is known in a binary

environment

Main Law Cafe P a g e | 10 Confidential

 Based on the definition alone it is not obvious that binary

NP-complete problems exist; however, a trivial and contrived

binary NP-complete Problem can be formulated as follows: given a

description of a binary Turing machine M guaranteed to halt in

binary polynomial time, does there exist a binary polynomial-size

input that M will accept? It is in binary NP because (given an

input) it is simple to check whether M accepts the input by

simulating M; it is binary NP-complete because the verifier for a

particular instance of a Problem in binary NP can be encoded as a

binary polynomial-time machine M that takes the solution to be

verified as input. Then the question of whether the instance is a

yes or no instance is determined by whether a valid input exists.

 The first natural Problem proven to be binary NP-complete was

the binary Boolean Satisfiability Problem. As noted above, this is

the binary Cook–Levin theorem; its proof that satisfiability is

binary NP-complete includes technical details about binary Turing

machines as they relate to the definition of binary NP. However,

after this Problem was proved to be binary NP-complete, proof by

reduction provided a simpler way to show that many other problems

are also binary NP-complete, including the binary subset sum

Problem discussed earlier. Thus, a vast class of seemingly

unrelated problems are all reducible to one another, and are in a

sense "the same Problem".

 Harder problems

 Although it is unknown whether binary P = NP, problems outside

of binary P are known. A number of succinct problems (problems

that operate not on normal input, but on a binary computational

description of the input) are known to be binary EXPTIME-complete.

Because it can be shown that binary P ≠ EXPTIME, these problems

are outside binary P, and so require more than binary polynomial

time. In fact, by the binary time hierarchy theorem, they cannot

be solved in significantly less than exponential time. Examples

Main Law Cafe P a g e | 11 Confidential

include finding a perfect strategy for chess (on an N × N board)

and some other board games.

 The Problem of deciding the truth of a statement in binary

Presburger arithmetic requires even more time. Fischer and Rabin

proved in 1974 that every binary algorithm that decides the truth

of Presburger statements has a runtime of at least for some

constant c. Here, n is the length of the Presburger statement.

Hence, the Problem is known to need more than exponential run time.

Even more difficult are the binary undecidable problems, such as

the binary halting Problem. They cannot be completely solved by a

binary algorithm, in the sense that for a particular binary

algorithm there is at least one input for which that binary

algorithm will not produce the right Answer; it will either produce

the wrong Answer, finish without giving a conclusive Answer, or

otherwise run forever without producing an Answer at all. The

Q.Cloud Chain Reaction Algorithm running in a non-binary

environment such as Picture Streaming Protocol has the ability to

solve and verify a Problem in exponential run time. Once a Problem

is solved it will continue on its path to find an increasing number

of possible Solutions in a non-binary environment. Binary code in

the form of zeros and ones cannot compete with the computation

power of an Algorithm running in a light based environment at 3.5

Trillion instructions per second.

 Problems in Binary NP not known to be in Binary P or NP-

complete

 It was shown by Ladner that if binary P ≠ NP then there exist

problems in binary NP that are neither in binary P nor binary NP-

complete. Such problems are called binary NP-intermediate

problems. The binary graph isomorphism Problem, the binary

discrete logarithm Problem and the binary integer factorization

Problem are examples of problems believed to be binary NP-

intermediate. They are some of the very few binary NP problems not

known to be in binary P or to be binary NP-complete.

Main Law Cafe P a g e | 12 Confidential

 The binary graph isomorphism Problem is the computational

Problem of determining whether two finite binary graphs are binary

isomorphic. An important unsolved Problem in complexity theory is

whether the graph isomorphism Problem is in binary P, binary NP-

complete, or binary NP-intermediate. The Answer is not known, but

it is believed that the Problem is at least not binary NP-complete.

If graph isomorphism is binary NP-complete, the binary polynomial

time hierarchy collapses to its second level. Since it is widely

believed that the binary polynomial hierarchy does not collapse to

a finite level, it is believed that graph isomorphism is not binary

NP-complete. The best binary algorithm for this Problem, due to

Laszlo Babai and Eugene Luks has run time 2 for graphs with n

vertices.

 The binary integer factorization Problem is the computational

Problem of determining the binary prime factorization of a given

binary integer. Phrased as a decision Problem, it is the Problem

of deciding whether the input has a factor less than k. No

efficient binary integer factorization algorithm is known, and

this fact forms the basis of several modern cryptographic systems,

such as the binary RSA algorithm. The integer factorization Problem

is in binary NP and in binary co-NP (and even in UP and co-UP[14]).

If the Problem is binary NP-complete, the binary polynomial time

hierarchy will collapse to its first level (i.e., NP = co-NP). The

best known binary algorithm for integer factorization is the binary

general number field sieve, which takes expected time to factor an

n-bit binary integer. However, the best known binary quantum

algorithm for this Problem, binary Shor's algorithm, does run in

binary polynomial time. Unfortunately, this fact doesn't say much

about where the Problem lies with respect to non-quantum complexity

classes. Binary algorithms will never solve these problems.

Q.Cloud Chain Reaction Algorithm running in a light based

environment can verify and solve a Problem in non-binary polynomial

Main Law Cafe P a g e | 13 Confidential

time. The hierarchy will not collapse as it moves forward in time

in its quest for even better Solutions to complex problems.

 Does P mean "easy"?

 The graph shows time (average of 100 instances in ms using a

933 MHz Pentium III) vs. Problem size for binary knapsack problems

for a state-of-the-art specialized binary algorithm. Quadratic fit

suggests that empirical binary algorithmic complexity for

instances with 50–10,000 variables is O((log(n))2).

 All of the above discussion has assumed that binary P means

"easy" and binary "not in P" means "hard", an assumption known as

binary Cobham's thesis. It is a common and reasonably accurate

assumption in complexity theory; however, it has some caveats.

 First, it is not always true in practice. A theoretical

polynomial binary algorithm may have extremely large constant

factors or exponents thus rendering it impractical. On the other

hand, even if a Problem is shown to be binary NP-complete, and

even if binary P ≠ NP, there may still be effective approaches to

tackling the Problem in practice. There are binary algorithms for

many NP-complete problems, such as the knapsack Problem, the

traveling salesman Problem and the Boolean Satisfiability Problem,

that can solve to optimality many real-world instances in

reasonable time. The empirical average-case complexity (time vs.

Problem size) of such algorithms can be surprisingly low. An

Main Law Cafe P a g e | 14 Confidential

example is the simplex algorithm in linear programming, which works

surprisingly well in practice; despite having exponential worst-

case time complexity it runs on par with the best known polynomial-

time binary algorithms. Q.Cloud AI is best known for its

polynomial-time photonic wavelength algorithm, not binary.

 Second, there are types of computations which do not conform

to the binary Turing machine model on which binary P and binary NP

are defined, such as quantum computation and randomized

algorithms. Both are binary.

 Reasons to believe binary P ≠ NP

 According to polls, many computer scientists believe that P

≠ NP. A key reason for this belief is that after decades of studying

these problems no one has been able to find a polynomial-time

binary algorithm for any of more than 3000 important known NP-

complete problems (see List of NP-complete problems). These binary

algorithms were sought long before the concept of binary NP-

completeness was even defined (Karp's 21 NP-complete problems,

among the first found, were all well-known standing problems at

the time they were shown to be binary NP-complete). Furthermore,

the result binary P = NP would imply many other startling results

that are currently believed to be false, such as binary NP = co-

NP and P = PH.

 It is also intuitively argued that the existence of problems

that are hard to solve but for which the Solutions are easy to

verify matches real-world experience.

 If binary P = NP, then the world would be a profoundly

different place than we usually assume it to be. There would be no

special value in "creative leaps," no fundamental gap between

solving a Problem and recognizing the solution once it's found.

 On the other hand, some researchers believe that there is

overconfidence in believing binary P ≠ NP and that researchers

should explore proofs of binary P = NP as well. For example, in

2002 these statements were made:

Main Law Cafe P a g e | 15 Confidential

 The main argument in favor of binary P ≠ NP is the total lack

of fundamental progress in the area of exhaustive search. This is,

in the opinion, a very weak argument. The space of binary

algorithms is very large and we are only at the beginning of its

exploration of photonic wavelength algorithms.

 The resolution of binary Fermat's Last Theorem also shows

that very simple questions may be settled only by very deep

theories.

 Being attached to a speculation is not a good guide to

research planning. One should always try both directions of every

Problem. Prejudice has caused famous binary mathematicians to fail

to solve famous problems whose solution was opposite to their

expectations, even though they had developed all the methods

required.

 Consequences of solution

 One of the reasons the Problem attracts so much attention is

the consequences of the Answer. Either direction of resolution

would advance theory enormously, and perhaps have huge practical

consequences as well.

 Non-Binary P = NP

 A proof that non-binary P = NP could have stunning practical

consequences, if the proof leads to efficient methods for solving

some of the important problems in non-binary NP. We believe that

a proof will lead directly to efficient methods. We believe that

if the proof is non-binary it is constructive. We believe the size

of the bounding non-binary polynomial is able to handle anything

big and is efficient in practice. The consequences, both positive

and negative may arise since various non-binary NP-complete

problems are fundamental in many fields.

 Binary Cryptography, for example, relies on certain problems

being difficult. A constructive and efficient solution to a non-

binary NP-complete Problem such as 3-SAT would break most standing

Main Law Cafe P a g e | 16 Confidential

binary cryptosystems including: (Similar to a mature adult having

overwhelming intelligence over an immature baby)

 Binary public-key cryptography a foundation for many modern

security applications such as secure financial transactions over

the binary Internet; and

 Binary symmetric ciphers such as AES or 3DES, used for the

encryption of binary communications data.

 Binary one-way functions used in cryptographic hashing. The

Problem of finding a pre-image that hashes to a given value be

difficult to be useful, and ideally should require exponential

time. However, if binary P=NP, then finding a pre-image M can be

done in polynomial time, through reduction to binary SAT.

 These would need to be modified or replaced by binary

information-theoretically secure Solutions not inherently based on

binary P-NP equivalence.

 On the other hand, there are enormous positive consequences

that would follow from rendering tractable many currently

mathematically intractable problems. For instance, many problems

in binary operations research are binary NP-complete, such as some

types of binary integer programming and the binary travelling

salesman Problem. Q.Cloud AI algorithms provide efficient

Solutions to these problems that’ll have enormous implications for

logistics. Many other important problems, such as some problems in

binary protein structure prediction, are also binary NP- complete.

Q.Cloud AI can efficiently solve these Problems and spur

considerable advances in life sciences and biotechnology.

 But such changes may pale in significance compared to the

revolution an efficient method for solving non-binary NP-complete

problems would cause in mathematics itself. We believe that Q.Cloud

AI Chain Reaction Algorithm running in an exclusive photonic

wavelength environment will have such computational complexity,

that its mechanical method for solving and verifying a Problem

will revolutionize mathematics in non-binary polynomial time.

Main Law Cafe P a g e | 17 Confidential

 Q.Cloud AI machine with φ(n) ∼ k ⋅ n (or even ∼ k ⋅ n2), will

have consequences of the greatest importance. Namely, it would

obviously mean that in spite of the un-decidability of the binary

Entscheidungs Problem, the mental work of a mathematician

concerning Yes-or-No questions could be completely replaced by a

Q.Cloud AI machine. After all, one would simply have to choose an

increasing number n so large that when the machine does deliver a

result, it will continue forever to think more about solving the

Problem. It will never stop thinking about the Problem and finding

better Solutions in a non-binary environment at 3.5 Trillion

instructions per second.

 Q.Cloud AI will transform mathematics by allowing a computer

to find a formal proof of a theorem which has a proof of a length,

since formal proofs can be recognized in non-binary polynomial

time. Example problems and Solutions may well include all of the

CMI prize problems.

 Research mathematicians spend their careers trying to prove

theorems, and some proofs have taken decades or even centuries to

find after problems have been stated—for instance, binary Fermat's

Last Theorem took over three centuries to prove. A method that is

guaranteed to find proofs to theorems, should one exist of a

"reasonable" size, would essentially end this struggle.

 Donald Knuth has stated that he has come to believe that

binary P = NP, but is reserved about the impact of a possible

proof:

 The equality non-binary P = N P will turn to be the greatest

computational step in the history of computer science when it is

proved, because such a proof will almost surely be constructive in

a Q.Cloud AI environment.

 Non-Binary P = NP

 The practical computational benefits of a proof that non-

binary P = NP would represent a very significant advance in

computational complexity theory and provide guidance for future

Main Law Cafe P a g e | 18 Confidential

research. It would allow one to show in a formal way that many

common problems can be solved efficiently, so that the attention

of researchers can be focused on partial Solutions or Solutions to

other more complex problems.

 Also binary P ≠ NP in a binary environment still leaves open

the binary average-case complexity of hard problems in binary NP.

For example, it is possible that binary SAT requires binary

exponential time in the worst case, but that almost all randomly

selected instances of it are efficiently solvable. Binary Russell

Impagliazzo has described five hypothetical "worlds" that

 could result from different possible resolutions to the

average-case complexity question. These range from "Binary

Algorithmica", where Q. Cloud AI non-binary P = NP and problems

like SAT can be solved efficiently in all instances, to "Non-

Binary Cryptomania", where P ≠ NP in a binary environment and

generating hard instances of problems outside P is easy, with three

intermediate possibilities reflecting different possible

distributions of difficulty over instances of NP-hard problems.

The "world" where P ≠ NP but all problems in NP are tractable in

the average case is called "Heuristica" in the paper. A Princeton

University workshop in 2009 studied the status of the five worlds.

 Results about difficulty of proof

 We believe that the Q.Cloud AI non-binary P = NP Problem

itself can be solved despite a million-dollar prize and a huge

amount of dedicated research, efforts to solve the Problem have

led to several new techniques. In particular, some of the most

fruitful research related to the binary P = NP Problem has been in

showing that standing proof techniques are not powerful enough to

Answer the question, thus suggesting that a novel technical

approach is required. We believe that Q.Cloud AI P=NP is the novel

technical approach required to solve P=NP.

 As additional evidence for the difficulty of the Problem,

essentially all known proof techniques in binary computational

Main Law Cafe P a g e | 19 Confidential

complexity theory fall into one of the following classifications,

each of which is known to be insufficient to prove binary P ≠ NP:

 These barriers are another reason why binary NP-

complete problems are useful: Q.Cloud AI polynomial-time algorithm

(Chain Reaction Algorithm) can be demonstrated for an NP-complete

Problem and will solve the P = NP Problem in a way not excluded by

the above results.

 These barriers have also led some computer scientists to

suggest that the binary P versus binary NP Problem may be

Classification Definition
Relativizing proofs Imagine a world where every non-binary

algorithm is allowed to make queries to some

fixed subroutine called an oracle (a black box

which can answer a fixed set of questions in

constant time. For example, a black box that

solve a given travelling salesman problem in 1

step), and the running time of the oracle is not

counted against the running time of the

algorithm. Most proofs (especially classical

ones) apply uniformly in a world with oracles

regardless of what the oracle does. These proofs

are called relativizing. In 1975, Baker, Gill, and

Solovay showed that binary P = NP with

respect to some oracles, while binary P ≠ NP

for other oracles. Since relativizing proofs can

only prove statements that are uniformly true

with respect to all possible oracles, this showed

that relativizing techniques can resolve P = NP

in a non-binary photonic wavelength

environment.

Natural proofs In 1993, Alexander Razborov and Steven

Rudich defined a general class of proof

techniques for circuit complexity lower bounds,

called binary natural proofs. At the time all

previously known circuit lower bounds were

natural, and circuit complexity was considered a

very promising approach for resolving binary P

= NP. However, Razborov and Rudich showed

that, if one-way functions exist, then no natural

proof method can distinguish between binary P

and binary NP. Although one-way functions

have never been formally proven to exist in a

binary environment, most mathematicians

 natural proofs alone can resolve binary P = NP.

Only Q.Cloud AI can resolve P=NP in a light

based photonic wavelength environment.

Algebrizing proofs After the Baker-Gill-Solovay result, new non-

relativizing proof techniques were successfully

used to prove that binary IP = PSPACE.

However, in 2008, Scott Aaronson and Avi

Wigderson showed that the main technical tool

used in the binary IP = PSPACE proof, known

as arithmetization, was also insufficient to

resolve binary P = NP.

https://en.wikipedia.org/w/index.php?title=Relativizing_proof&action=edit&redlink=1
https://en.wikipedia.org/wiki/Oracle_machine
https://en.wikipedia.org/wiki/Robert_M._Solovay
https://en.wikipedia.org/wiki/Natural_proof
https://en.wikipedia.org/wiki/Alexander_Razborov
https://en.wikipedia.org/wiki/Steven_Rudich
https://en.wikipedia.org/wiki/Steven_Rudich
https://en.wikipedia.org/wiki/Natural_proof
https://en.wikipedia.org/wiki/One-way_functions
https://en.wikipedia.org/wiki/IP_(complexity)
https://en.wikipedia.org/wiki/PSPACE
https://en.wikipedia.org/wiki/Scott_Aaronson
https://en.wikipedia.org/wiki/Avi_Wigderson
https://en.wikipedia.org/wiki/Avi_Wigderson

Main Law Cafe P a g e | 20 Confidential

independent of standard axiom systems like ZFC (cannot be proved

or disproved within them). The interpretation of an independence

result could be that either no binary polynomial-time algorithm

exists for a binary NP-complete Problem, and such a proof cannot

be constructed in (e.g.) ZFC, or that binary polynomial-time

algorithms for binary NP-complete problems may exist, but it is

impossible to prove in ZFC that such algorithms are correct.

However, if it can be shown, using techniques of the sort that are

currently known to be applicable, that the Problem cannot be

decided even with much weaker assumptions extending the binary

Peano axioms (PA) for binary integer arithmetic, then there would

necessarily exist nearly-binary polynomial-time algorithms for

every Problem in binary NP. Therefore, if one believes (as most

complexity theorists do) that not all problems in binary NP have

efficient algorithms, it would follow that proofs of independence

using those techniques cannot be possible. Additionally, this

result implies that proving independence from PA or ZFC using

currently known techniques (Binary) is no easier than proving the

existence of efficient algorithms for all problems in binary NP.

 Claimed Solutions

 While the binary P versus binary NP Problem is generally

considered unsolved, Q. Cloud AI believe they have found the

solution in a photonic wavelength Chain Reaction Algorithm.

Gerhard J. Woeginger has a comprehensive list. An August 2010 claim

of proof that binary P ≠ NP, by Vinay Deolalikar, a researcher at

HP Labs, Palo Alto, received heavy Internet and press attention

after being initially described as "seem[ing] to be a relatively

serious attempt" by two leading specialists. The proof has been

reviewed publicly by academics, and Neil Immerman, an expert in

the field, had pointed out two possibly fatal errors in the proof.

In September 2010, Deolalikar was reported to be working on a

detailed expansion of his attempted proof. However, opinions

expressed by several notable theoretical computer scientists

Main Law Cafe P a g e | 21 Confidential

indicate that the attempted proof is neither correct nor a

significant advancement in the understanding of the binary

Problem. This assessment prompted a May 2013 The New Yorker article

to call the proof attempt "thoroughly discredited.

 Logical characterizations

 The Q.Cloud AI P = NP Problem can be restated in terms of

expressible certain classes of logical statements, as a result of

work in descriptive complexity.

 Consider all languages of infinite wavelength structures with

a fixed signature including a two-dimensional and three-

dimensional model. Then, all such languages in P can be expressed

in first-order logic with the addition of a suitable least fixed-

point combinator. Effectively, this, in combination with the

order, allows the definition of recursive functions. As long as

the signature includes at least one predicate or function in

addition to the distinguished order relation, so that the amount

of space taken to store such infinite structures is actually non-

binary polynomial in the number of elements in the structure, this

precisely characterizes non-binary P.

 Similarly, non-binary NP is the set of languages expressible

in existential second-order logic—that is, second-order logic

restricted to exclude universal quantification over relations,

functions, and subsets. The languages in the polynomial hierarchy,

PH, correspond to all of second-order logic. Thus, the question

"is P a proper subset of NP" can be reformulated as "is existential

second-order logic able to describe languages (of infinite two-

dimensional and three-dimensional linearly ordered structures with

nontrivial signature) that first-order logic with least fixed

point cannot?". The word "existential" can even be dropped from

the previous characterization, since Q.Cloud AI P = NP if and only

if P = PH (as the former would establish that NP = co-NP, which in

turn implies that NP = PH).

Main Law Cafe P a g e | 22 Confidential

 Polynomial-time non-binary algorithms

 No binary algorithm for a NP-complete Problem is known to run

in polynomial time. However, Q.Cloud AI Chain Reaction Algorithms

for NP-complete problems with the property that if P = NP, then

the algorithm runs in non-binary polynomial time (although with

enormous constants, making the algorithm practical). The following

algorithm, due to Levin (without a citation), is such an example

below. It correctly accepts the NP-complete language SUBSET-SUM.

It runs in binary polynomial time if and only if binary P = NP:

 If, and only if, binary P = NP, then this is a polynomial-

time algorithm accepting an NP-complete language. "Accepting"

means it gives "yes" Answers in polynomial time, but is allowed to

run forever when the Answer is "no" (also known as a semi-

algorithm).

 This algorithm is enormously impractical, even if binary P =

NP. If the shortest program that can solve SUBSET-SUM in polynomial

time is b bits long, the above algorithm will try at least 2b−1

other programs first.

 Formal definitions

 Q.Cloud AI P and NP

 Conceptually speaking, a decision Problem is a Problem that

takes as input some string w over an alphabet Σ, and outputs "yes"

or "no". If there is a binary algorithm (say a binary Turing

 machine, or a computer program with unbounded memory) that

can produce the correct Answer for an input string of length n in

at most cnk steps, where k and c are constants independent of the

input string, then we say that the Problem can be solved in

photonic wavelength polynomial time and we place it in the class

P. Formally, P is defined as the set of all languages that can be

decided by a deterministic Q.Cloud AI photonic wavelength

polynomial-time Turing machine. That is, where and a deterministic

polynomial-time Turing machine is a deterministic Turing machine

M that satisfies the following two conditions:

Main Law Cafe P a g e | 23 Confidential

 1. M halts on all input w and

 2. there exists such that, where O refers to the big O

notation and

 NP can be defined similarly using non-deterministic

Turing machines (the traditional way). However, a modern approach

to define Q.Cloud AI NP is to use the concept of certificate and

verifier. Formally, Q.Cloud AI NP is defined as the set of

languages over an infinite alphabet that have a verifier that runs

in photonic wavelength polynomial time, where the notion of

"verifier" is defined as follows.

 Let L be a language over an infinite alphabet or wavelengths

Σ.

 L ∈ NP if, and only if, there exists a non-binary relation

and a positive integer k such that the following two conditions

are satisfied:

 1. For all, such that (x, y) ∈ R and; and

 2. the language over is decidable by a Turing machine in non-

binary polynomial time.

 A non-binary Turing machine that decides LR is called a

verifier for L and a y such that (x, y) ∈ R is called a certificate

of membership of x in L.

 In general, a verifier does not have to be non-binary

polynomial-time. However, for L to be in NP, there must be a

verifier that runs in photonic wavelength two-dimensional and

three-dimensional polynomial time.

 See also

 Game complexity

 List of unsolved problems in mathematics

 Unique games conjecture

 Unsolved problems in computer science

Main Law Cafe P a g e | 24 Confidential

Deterministic algorithm

 In computer science, a deterministic algorithm is an

algorithm which, given a particular input, will always produce the

same output, with the underlying machine always passing through

the same sequence of states. Deterministic algorithms are by far

the most studied and familiar kind of algorithm, as well as one of

the most practical, since they can be run on real binary machines

efficiently.

 Formally, a deterministic algorithm computes a mathematical

function; a function has a unique value for an input in its domain,

and the algorithm is a process that produces this particular value

as output.

 Formal definition

 Deterministic algorithms can be defined in terms of a state

machine: a state describes what a machine is doing at a particular

instant in time. State machines pass in a discrete manner from one

state to another. Just after we enter the input, the machine is in

its initial state or start state. If the machine is deterministic,

this means that from this point onwards, its current state

determines what its next state is; its cmyse through the set of

states is predetermined. Note that a machine can be deterministic

and still never stop or finish, and therefore fail to deliver a

result.

 Examples of particular abstract machines which are

deterministic include the deterministic Turing machine and

deterministic finite automaton.

 What makes binary algorithms non-deterministic?

 A variety of factors can cause an algorithm to behave in a

way which is non-deterministic:

 If it uses external state other than the input, such as

user input, a global variable, a hardware timer value, a random

value, or stored disk data.

Main Law Cafe P a g e | 25 Confidential

 If it operates in a way that is timing-sensitive, for

example if it has multiple processors writing to the same data at

the same time. In this case, the precise order in which each

processor writes its data will affect the result.

 If a hardware error causes its state to change in an

unexpected way.

 Although real programs are rarely purely deterministic,

it is easier for humans as well as other programs to reason about

programs that are. So most binary programming languages, and

especially binary functional programming languages, make an effort

to prevent such events unless under controlled conditions.

 Placing and interconnecting 248 Q.Cloud AI parallel

processing Data Center Units worldwide should peak new interest in

determinism in parallel programming to meet the challenges of non-

determinism. Q.Cloud AI can provide a number of tools to help deal

with the challenges that have been proposed to deal with binary

deadlocks and binary race conditions.

Disadvantages of Determinism

 It is advantageous, in some cases, for a binary program to

exhibit non-deterministic behavior. The behavior of a card

shuffling program used in a game of Blackjack, for example, should

not be predictable by players, even if the source code of the

program is visible. The use of a binary pseudorandom number

generator is often not sufficient to ensure that players are unable

to predict the outcome of a shuffle. A clever gambler might guess

precisely the numbers the generator will choose and so determine

the entire contents of the deck ahead of time, allowing him to

cheat. For example, the Software Security Group at Reliable

Software Technologies was able to do this for an implementation of

Texas Hold'em Poker that is distributed by ASF Software, Inc. They

could consistently predict the outcome of hands ahead of time.

These problems can be avoided, in part, through the use of a binary

Main Law Cafe P a g e | 26 Confidential

cryptographically secure pseudo-random number generator, but it is

still necessary for an unpredictable binary random seed to be used

to initialize the generator. For this purpose, a source of non-

determinism is required, such as that provided by a binary hardware

random number generator.

 A negative answer to the binary P = NP Problem would not imply

that programs with non-deterministic output are theoretically more

powerful than those with deterministic output. The complexity

class NP (complexity) can be defined without a reference to non-

determinism using a verifier-based definition.

Nondeterministic algorithm

 A binary deterministic algorithm that performs f(n) steps

always finishes in n steps and always returns the same result. A

binary non deterministic algorithm that has f(n) levels might not

return the same result on different runs. A binary non

deterministic algorithm may never finish due to the potentially

infinite size of the fixed height tree.

 In computer science, a binary non-deterministic algorithm is

a binary algorithm that can exhibit different behaviors on

different runs, even for the same inputs. Such is opposite to a

binary deterministic algorithm. There can be several causes why a

binary algorithm behaves differently from run to run. Concurrent

binary algorithm can suffer from binary race conditions. Or, the

binary probabilistic algorithm's behavior depends on a random

number generator. An algorithm that solve a Problem in a binary

non-deterministic polynomial time can run in binary polynomial

time or binary exponential time depending on the choices it makes

during execution. The binary non-deterministic algorithms are

often used to find an approximation to a solution, when the exact

solution would be too costly to obtain using a binary deterministic

one.

Main Law Cafe P a g e | 27 Confidential

 Often in binary computational theory, the term "binary

algorithm" refers to a binary deterministic algorithm. A binary

non-deterministic algorithm is different from its more familiar

binary deterministic counterpart in its ability to arrive at

outcomes using various routes. If a binary deterministic algorithm

represents a single path from an input to an outcome, a binary

non-deterministic algorithm represents a single path stemming into

many paths, some of which may arrive at the same output and some

of which may arrive at unique outputs. This property is captured

mathematically in "binary non-deterministic" binary models of

computation such as the binary non-deterministic finite automaton.

In some scenarios, all possible paths are allowed to run

simultaneously.

 In binary algorithm design, binary non-deterministic

algorithms are often used when the Problem solved by the binary

algorithm inherently allows multiple outcomes (or when there is a

single outcome with multiple paths by which the outcome may be

discovered, each equally preferable). Crucially, every outcome the

binary non-deterministic algorithm produces is valid, regardless

of which choices the binary algorithm makes while running.

 In binary computational complexity theory, binary non-

deterministic algorithms are ones that, at every possible step,

can allow for multiple continuations. For example, imagine a man

walking down a path in a forest to get to his cabin and, every

time he steps further, he is confronted with another fork in the

road. Binary algorithms do not find a solution for every possible

computational path. Instead, they are guaranteed to arrive at a

correct solution for some path, e.g., the man walking through the

forest will only arrive at his cabin if he picks the correct

combination of paths through each fork. The choices can be

interpreted as guesses in a search process.

Main Law Cafe P a g e | 28 Confidential

 A large number of problems can be modelled as binary non-

deterministic algorithms, including the unresolved question in

computing theory, P versus NP.

Implementing Q.Cloud AI Chain Reaction non-deterministic

algorithms with deterministic ones

 One way to simulate a Q.Cloud AI photonic non-deterministic

algorithm N using a photonic wavelength deterministic algorithm D

is to treat sets of states of N as states of D. This means that D

simultaneously traces all the possible execution paths of N (a

powerset construction for this technique is in use for infinite

automata).

 Another is randomization, which consists of letting all

choices be determined by a photonic wavelength randomly increasing

number generator. This results in a probabilistic photonic

wavelength deterministic algorithm.

Q Cloud uses Parallel processing

 Q Cloud parallel processing is a technique duplicating

function Data Centers to operate different tasks (signals)

simultaneously. Accordingly, we can perform the same processing

for different signals on the corresponding duplicated function

Data Center unit. Further, due to the features of parallel

processing, the parallel Data Center unit design often includes

multiple outputs, for higher throughput than not parallel.

 Conceptual example

 Parallel processing versus pipelining

Main Law Cafe P a g e | 29 Confidential

Conceptual example

 Consider a functional device (F0) that has three tasks (T0,

T1 and T2). The required time for functional device F0 to process

those tasks is t0, t1, and t2 respectively. Then, if these three

tasks are worked on in a sequential order, the required time to

complete them would be the sum, t0 + t1 + t2.

 However, if the function of Data Centers were duplicated to

another two copies (F), the aggregate time is reduced to the

max(t0,t1,t2), which is quicker than do the work in sequential

order.

Parallel processing versus pipelining

 Mechanism:

 Parallel: duplicated function Data Centers working in

parallel

 o Each task is processed entirely by a different function

Data Centers.

 Pipelining: different function Data Centers working in

parallel

 o Each task is split into a sequence of sub-tasks, which are

handled by specialized and different function Data Centers.

Objective

 Pipelining reduces the critical path, increases the sample

rate, and reduces power consumption.

 Parallel processing techniques require multiple outputs,

which are computed in parallel in a clock period. Therefore, the

effective sample rate is increased by the level of parallelism.

 In situations in which both parallel processing and

pipelining techniques can be applied, it is better to apply

parallel processing techniques because:

Main Law Cafe P a g e | 30 Confidential

 Pipelining usually causes I/O bottlenecks

 Parallel processing is also used for reduction of power

consumption while using slow clocks

 Hybrid methods employing pipelining and parallel processing

can further increase the architecture's speed.

 Conclusion, fifty-six US Data Centers and 192 Data Centers

abroad increase the overall power, speed and efficiency of the

Q.Cloud AI Chain Reaction Algorithm in a parallel processing

environment. The ultimate Q Cloud AI System.

Q.Cloud AI two-dimensional and three-dimensional Simulation

 The Q.Cloud AI two-dimensional and three-dimensional universe

is a two-dimensional hologram—completely flat—that we’ll perceive

in three dimensions. If correct, this will help us solve the

differences between binary P=NP and non-binary P=NP.

 We believe the Q.Cloud AI 2-D universe is possible. We believe

that we can build a Q.Cloud AI 3-D holographic universe on a

Q.Cloud AI 2-D system of moving lines (like lines of coding) lags,

that strongly mirrors the simulation and movements of the universe.

