
Event Mining with Event Processing Networks

Louis Perrochon� Walter Mann� Stephane Kasriel� and David C� Luckham

Computer Systems Lab� Stanford University� Stanford� CA ������ USA
http���pavg�stanford�edu�

Abstract� Event Mining discovers information in a stream of data� or
events� and delivers knowledge in real�time� Our event processing en�
gine consists of a network of event processing agents �EPAs	 running
in parallel that interact using a dedicated event processing infrastruc�
ture� EPAs can be con
gured at run�time using a formal pattern lan�
guage� The underlying infrastructure provides an abstract communica�
tion mechanism and thus allows dynamic recon
guration of the commu�
nication topology between agents at run�time and provides transparent�
location�independent access to all data� These features support dynamic
allocation of EPAs to machines in a local area network at run time�

� Introduction

Event mining �EM� delivers knowledge about a complex system in real�time
based on events that denote the system�s activities� A system can be anything
from a single semiconductor fabrication line to the interconnected check�out
registers of a nation�wide retailer� Such systems may be probed to produce events
as the system operates� Events are then mined in a multitude of ways� Unwanted
events are �ltered out� patterns of logically corresponding events are aggregated
into one new complex event� repetitive events are counted and aggregated into
a new single event with a count of how often the original event occurred� etc�
This mining process of producing fewer �better	 events out of many �lesser	
events can be iterated� The presentation of the mined events to the user is
virtually unlimited� EM is particularly well suited for event based systems� but is
applicable to other systems as well� e�g� updates in a database can be interpreted
as events� The following two applications are typical examples of EM�

Business applications� EM based real�time decision support systems con�
stantly gather information from throughout the enterprise and immediately
respond to changes in information� These systems are business event driven�
where a business event represents any signi�cant change in business data or
conditions�

Enterprise network and systems management� Event patterns that may
lead to a failure �e�g� an important disk �lling up� or that could signal
break�in attempts �i�e� connect requests to multiple targets from a single
source over a short time� are detected as they occur� EM provides immedi�
ate noti�cation of such conditions to the managers of large� mission critical



�

networks� Automatic prioritizing of alerts and quick root cause analysis leads
to reduced response time� higher up�time and allows network managers to
quickly respond to critical situations�

In order to understand complex systems and e
ciently deal with complex
patterns of events� logging with just a time stamp is often not enough� The two
following features greatly increase the power of EM�

Complex event structures� Events should be stored as complex objects to�
gether with relationships among them instead of just tuples in a relational
sense� EM should support event relationships beyond time� e�g� causality� one
event causes another� In today�s networked real�time environments events
come from multiple independent sources and not all events are ordered in
respect to each other� If such a natural partial order of events is implicitly
reduced to a total order in logging� information is lost and non�determinism
is introduced ���

Flexibility� Because EM happens in real�time� queries need not be hard coded�
but be must be �exible� and con�gurable at runtime� It should be possible at
any time to start a new query against an ongoing event stream� that either
considers only new events� only old events� or both�

EM supporting these two features is part of Stanford University�s RAPIDE
project� We developed an extensive set of tools that supports logging� mining�
storing� and viewing of events in real�time� RAPIDE events are related by time
and cause� Each relation builds a partial order on all the events� A formal pat�
tern language �� supports the construction of �lters and maps� constructs that
aggregate simple events to complex events on a higher level of abstraction ���
The same process can be used to query complex events� thus building a more
and more abstract view of the system� Our tools are implemented and available
for Sun�Solaris ��� and Linux and can process several hundred events per second
on an Ultra �� We are currently negotiating with pilot users in industry�

� Event Processing Networks

The RAPIDE EM technology is based on the concept of Event Processing Net�
works �EPNs�� Such networks consist of any number of Event Processing Agents
�EPAs�� namely event sources� event processors and event viewers� Fig� � shows
an overview over the three categories� with thin arrows indicating the �logical�
�ow of events from sources through processors to viewers�

Event sources in our applications are typically middleware sni�ers� The sys�
tem middleware can be pure TCP�IP� an event communication service based on
a proprietary protocol like TIBCO Inc��s TIB or Vitria� Inc��s Communicator� or
a military standard like the MIL STD ����� We also automatically instrument
the source code of system written in Java to intercept events within the Java en�
gine ��� Typical examples for event processors are �lters and maps� Filters pass
on only a subset of their input� maps aggregate multiple events in the input to



�

Infrastructure
Algori thms, Storage,

Communicat ion

Complex System

Loggers
Sniffers, Import, ...

Loggers
Sniffers, Import, ...

Viewers
GUI

Viewers
GUI

Agents
Constraints, Filters, ...

Agents
Constraints, Filters, ...

Processors
Constraints, Maps,

Filters, ...

Viewers
Meters, Tables,

Graphs

write events Read events

Sources
Loggers, Sniffers,

Import, Simulators...

Read and write events

Fig� �� Event Mining �EM	

output events thus generating events on a higher level of abstraction� Any third
party event processor can be inserted into an EPN allowing for the integration
with other approaches� Typical event viewers are a graphical viewer for partially
ordered sets of events� a tabular viewer of event frequency or a simple gauge
metering the value of an important parameter�

Data needs to be stored persistently because agents may want to access past
events� even long after they have happened� Also the number of objects currently
under consideration may easily exceed the size of the available main memory�
thus EM requires some way of storing objects temporarily to disk� RAPIDE EM
includes a shared data store that keeps track of all the objects� New objects
are written into the data store from where agents and viewers read them� A
communication service noti�es other EPAs when new objects are added�

Events �ow through the EPN in real�time and are displayed in viewers as soon
as they are created� limited only by the speed of the underlying infrastructure�
Processed events are displayed in viewers shortly after the underlying events
have been created by the event source� EPNs are dynamic in that all EPAs
can be added and removed at runtime� Newly added agents can either ignore
all previous events and just start with the current event at the time they are
added� or they can try to catch up all events from the beginning� As EPNs are
distributed� EPAs can reside on machines distributed across a network�

� Real Time Pattern Queries

The RAPIDE pattern language allows the user to describe patterns of events� A
RAPIDE pattern matcher searches for all occurrences of a pattern of events in a
partially ordered set� A typical example would search for all A events that cause
both a B and a C event� with B and C independent of each other� In RAPIDE
this pattern could be speci�ed as� A � �B � C�� In OQL� clumsily enhanced
with a � operator denoting one or several repetitions of the path expression� this
query would look like�



�

select tuple�e�ID� f�ID� g�ID�

from event e� e��successor�� f� e��successor�� g

where e�type��A� and f�type��B� and g�type��C� and

�NOT f��successor���g� OR �NOT f��successor���g� OR f�g�

Executing this query from scratch whenever a new event is added to the set is
very ine
cient� as potentially the whole set has to be traversed� Also� computing
the complete transitive closure of the successor relation as a derived relationship
is not feasible in a real�time setting� The algorithmswe use instead were originally
inspired by ��� Our pattern matching algorithm searches whatever it can on the
available data and keeps partially completed results around if possible� When
new data arrives� only the partial results which might possibly bene�t from the
new event need to be reinvestigated�

We call this process incremental query execution or incremental queries� In�
cremental queries return new hits as new records are inserted and optimize re�
execution of an ongoing query when new objects are inserted� This optimization
is a trade o� between storing all partial results on the one hand and rebuilding all
partial results on the other hand� Incremental queries are similar to materialized
views with real�time constraints� For our purpose� we can think of incremental
queries as a repository of ongoing queries� along with some state information on
these queries� Every time a new event is added� the queries of this repository
would be allowed to run on that element only and the requesting client would
be noti�ed if there are new hits� Incremental queries require two interdependent
modules�

Noti�cation �call�backs� triggers� that noti�es interested clients of insertions
and updates on speci�c objects in the database� and

Dynamic Adaptation that modi�es the current query execution plan depend�
ing on the newly inserted object and runs the query� This must be done e
�
ciently� e�g� the query tree should be executed in such a way that a minimal
amount of work is redone� We believe that these two elements are useful even
beyond implementing pattern matching for EM� e� g� for rule processing in
real time expert systems ���

The commercial OODBMS that we looked at had very limited support for
noti�cation� most of them require polling the database for new events� With
polling� throughput does not scale with the size of the database because search�
ing time for any new object is not constant� One way out is to partition the
database� However� big partitions do not help much� and small partitions in�
crease the number of partitions which adds the overhead of keeping track of
them� Worse� references between partitions are slower than references within a
partition� reducing throughput� In addition� polling has to be done by all read�
ers individually� increasing the load in an event processing network� Overall� our
experiments with polling lead to a throughput of only a few objects per second�
Hence having readers poll the database for new events is completely unrealistic
for our purposes� Only one of the commercial OODBMS we looked at o�ered



�

call�backs �triggers� on certain changes in the database� but so slow that we
could only hope to notify a few objects per second� But clearly� e
cient call�
backs with minimal delay is critical� To support our requirements� we added our
own noti�cation mechanism�

� Mining Event Patterns

Given an infrastructure for building large databases of events and their temporal�
causal� and data attributes� along with a formal pattern language for expressing
relationships between events in a compact and expressive way� then event mining
is the process of extracting patterns from large sets of events in real time�

Our initial experiments in this area focus on using statistical analysis of
stored relationships between events �causality� equivalent data parameters� to
identify common yet complex behaviors implied by the events�

The patterns extracted via event mining may then be used to initiate further
event processing� For example� they may be used to �lter out normal event
behavior of a system� so that variations of it may be examined� Or� the patterns
extracted may be aggregated into higher level events� to allow views of the event
activity at a more abstract level�

A critical factor for real�time event mining is the need to process each new
event in constant time� Otherwise incoming events will eventually start to queue
up and lead to a big back log� Heuristic methods that are e�ective and e
cient
enough are one area of future research�

References

�� Pratt� V� R� Modeling concurrency with partial orders� Int� J� of Parallel Program�
ming� ����� ����	� p� ������

�� RAPIDE� Rapide ��� Pattern Language Reference Manual� Stanford University�
Stanford� �����

�� Luckham� D� C� and Frasca� B�� Complex Event Processing in Distributed Sys�
tems� Computer Systems Laboratory Technical Report CSL�TR�������� Stanford
University� Stanford� �����

�� Santoro� A�� et al�� eJava � Extending Java with Causality� In Proceedings of
��th International Conference on Software Engineering and Knowledge Engineering
�SEKE���	� ����� Redwood City� CA� USA�

�� Fidge� C� J�� Timestamps in message�passing systems that preserve the partial
ordering� Australian Computer Science Communications� ����� ����	� p� ������

�� Wolfson� O�� et al�� Incremental Evaluation of Rules and its Relationship to Paral�
lelism� In Proceedings of SIGMOD��� Conference on the Management of Data� �����
Boulder� CO� ACM Press�


