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Abstract� Event Mining discovers information in a stream of data� or
events� and delivers knowledge in real�time� Our event processing en�
gine consists of a network of event processing agents �EPAs	 running
in parallel that interact using a dedicated event processing infrastruc�
ture� EPAs can be con
gured at run�time using a formal pattern lan�
guage� The underlying infrastructure provides an abstract communica�
tion mechanism and thus allows dynamic recon
guration of the commu�
nication topology between agents at run�time and provides transparent�
location�independent access to all data� These features support dynamic
allocation of EPAs to machines in a local area network at run time�

� Introduction

Event mining �EM� delivers knowledge about a complex system in real�time
based on events that denote the system�s activities� A system can be anything
from a single semiconductor fabrication line to the interconnected check�out
registers of a nation�wide retailer� Such systems may be probed to produce events
as the system operates� Events are then mined in a multitude of ways� Unwanted
events are �ltered out� patterns of logically corresponding events are aggregated
into one new complex event� repetitive events are counted and aggregated into
a new single event with a count of how often the original event occurred� etc�
This mining process of producing fewer �better	 events out of many �lesser	
events can be iterated� The presentation of the mined events to the user is
virtually unlimited� EM is particularly well suited for event based systems� but is
applicable to other systems as well� e�g� updates in a database can be interpreted
as events� The following two applications are typical examples of EM�

Business applications� EM based real�time decision support systems con�
stantly gather information from throughout the enterprise and immediately
respond to changes in information� These systems are business event driven�
where a business event represents any signi�cant change in business data or
conditions�

Enterprise network and systems management� Event patterns that may
lead to a failure �e�g� an important disk �lling up� or that could signal
break�in attempts �i�e� connect requests to multiple targets from a single
source over a short time� are detected as they occur� EM provides immedi�
ate noti�cation of such conditions to the managers of large� mission critical



�

networks� Automatic prioritizing of alerts and quick root cause analysis leads
to reduced response time� higher up�time and allows network managers to
quickly respond to critical situations�

In order to understand complex systems and e
ciently deal with complex
patterns of events� logging with just a time stamp is often not enough� The two
following features greatly increase the power of EM�

Complex event structures� Events should be stored as complex objects to�
gether with relationships among them instead of just tuples in a relational
sense� EM should support event relationships beyond time� e�g� causality� one
event causes another� In today�s networked real�time environments events
come from multiple independent sources and not all events are ordered in
respect to each other� If such a natural partial order of events is implicitly
reduced to a total order in logging� information is lost and non�determinism
is introduced ���

Flexibility� Because EM happens in real�time� queries need not be hard coded�
but be must be �exible� and con�gurable at runtime� It should be possible at
any time to start a new query against an ongoing event stream� that either
considers only new events� only old events� or both�

EM supporting these two features is part of Stanford University�s RAPIDE
project� We developed an extensive set of tools that supports logging� mining�
storing� and viewing of events in real�time� RAPIDE events are related by time
and cause� Each relation builds a partial order on all the events� A formal pat�
tern language �� supports the construction of �lters and maps� constructs that
aggregate simple events to complex events on a higher level of abstraction ���
The same process can be used to query complex events� thus building a more
and more abstract view of the system� Our tools are implemented and available
for Sun�Solaris ��� and Linux and can process several hundred events per second
on an Ultra �� We are currently negotiating with pilot users in industry�

� Event Processing Networks

The RAPIDE EM technology is based on the concept of Event Processing Net�
works �EPNs�� Such networks consist of any number of Event Processing Agents
�EPAs�� namely event sources� event processors and event viewers� Fig� � shows
an overview over the three categories� with thin arrows indicating the �logical�
�ow of events from sources through processors to viewers�

Event sources in our applications are typically middleware sni�ers� The sys�
tem middleware can be pure TCP�IP� an event communication service based on
a proprietary protocol like TIBCO Inc��s TIB or Vitria� Inc��s Communicator� or
a military standard like the MIL STD ����� We also automatically instrument
the source code of system written in Java to intercept events within the Java en�
gine ��� Typical examples for event processors are �lters and maps� Filters pass
on only a subset of their input� maps aggregate multiple events in the input to
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output events thus generating events on a higher level of abstraction� Any third
party event processor can be inserted into an EPN allowing for the integration
with other approaches� Typical event viewers are a graphical viewer for partially
ordered sets of events� a tabular viewer of event frequency or a simple gauge
metering the value of an important parameter�

Data needs to be stored persistently because agents may want to access past
events� even long after they have happened� Also the number of objects currently
under consideration may easily exceed the size of the available main memory�
thus EM requires some way of storing objects temporarily to disk� RAPIDE EM
includes a shared data store that keeps track of all the objects� New objects
are written into the data store from where agents and viewers read them� A
communication service noti�es other EPAs when new objects are added�

Events �ow through the EPN in real�time and are displayed in viewers as soon
as they are created� limited only by the speed of the underlying infrastructure�
Processed events are displayed in viewers shortly after the underlying events
have been created by the event source� EPNs are dynamic in that all EPAs
can be added and removed at runtime� Newly added agents can either ignore
all previous events and just start with the current event at the time they are
added� or they can try to catch up all events from the beginning� As EPNs are
distributed� EPAs can reside on machines distributed across a network�

� Real Time Pattern Queries

The RAPIDE pattern language allows the user to describe patterns of events� A
RAPIDE pattern matcher searches for all occurrences of a pattern of events in a
partially ordered set� A typical example would search for all A events that cause
both a B and a C event� with B and C independent of each other� In RAPIDE
this pattern could be speci�ed as� A � �B � C�� In OQL� clumsily enhanced
with a � operator denoting one or several repetitions of the path expression� this
query would look like�
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select tuple�e�ID� f�ID� g�ID�

from event e� e��successor�� f� e��successor�� g

where e�type��A� and f�type��B� and g�type��C� and

�NOT f��successor���g� OR �NOT f��successor���g� OR f�g�

Executing this query from scratch whenever a new event is added to the set is
very ine
cient� as potentially the whole set has to be traversed� Also� computing
the complete transitive closure of the successor relation as a derived relationship
is not feasible in a real�time setting� The algorithmswe use instead were originally
inspired by ��� Our pattern matching algorithm searches whatever it can on the
available data and keeps partially completed results around if possible� When
new data arrives� only the partial results which might possibly bene�t from the
new event need to be reinvestigated�

We call this process incremental query execution or incremental queries� In�
cremental queries return new hits as new records are inserted and optimize re�
execution of an ongoing query when new objects are inserted� This optimization
is a trade o� between storing all partial results on the one hand and rebuilding all
partial results on the other hand� Incremental queries are similar to materialized
views with real�time constraints� For our purpose� we can think of incremental
queries as a repository of ongoing queries� along with some state information on
these queries� Every time a new event is added� the queries of this repository
would be allowed to run on that element only and the requesting client would
be noti�ed if there are new hits� Incremental queries require two interdependent
modules�

Noti�cation �call�backs� triggers� that noti�es interested clients of insertions
and updates on speci�c objects in the database� and

Dynamic Adaptation that modi�es the current query execution plan depend�
ing on the newly inserted object and runs the query� This must be done e
�
ciently� e�g� the query tree should be executed in such a way that a minimal
amount of work is redone� We believe that these two elements are useful even
beyond implementing pattern matching for EM� e� g� for rule processing in
real time expert systems ���

The commercial OODBMS that we looked at had very limited support for
noti�cation� most of them require polling the database for new events� With
polling� throughput does not scale with the size of the database because search�
ing time for any new object is not constant� One way out is to partition the
database� However� big partitions do not help much� and small partitions in�
crease the number of partitions which adds the overhead of keeping track of
them� Worse� references between partitions are slower than references within a
partition� reducing throughput� In addition� polling has to be done by all read�
ers individually� increasing the load in an event processing network� Overall� our
experiments with polling lead to a throughput of only a few objects per second�
Hence having readers poll the database for new events is completely unrealistic
for our purposes� Only one of the commercial OODBMS we looked at o�ered
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call�backs �triggers� on certain changes in the database� but so slow that we
could only hope to notify a few objects per second� But clearly� e
cient call�
backs with minimal delay is critical� To support our requirements� we added our
own noti�cation mechanism�

� Mining Event Patterns

Given an infrastructure for building large databases of events and their temporal�
causal� and data attributes� along with a formal pattern language for expressing
relationships between events in a compact and expressive way� then event mining
is the process of extracting patterns from large sets of events in real time�

Our initial experiments in this area focus on using statistical analysis of
stored relationships between events �causality� equivalent data parameters� to
identify common yet complex behaviors implied by the events�

The patterns extracted via event mining may then be used to initiate further
event processing� For example� they may be used to �lter out normal event
behavior of a system� so that variations of it may be examined� Or� the patterns
extracted may be aggregated into higher level events� to allow views of the event
activity at a more abstract level�

A critical factor for real�time event mining is the need to process each new
event in constant time� Otherwise incoming events will eventually start to queue
up and lead to a big back log� Heuristic methods that are e�ective and e
cient
enough are one area of future research�
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