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Lagrange distributed approximating functionals (LDAFs) are proposed as the basis for a new,
collocation-type method for accurately approximating functions and their derivatives both on and off
discrete grids. Example applications are presented to illustrate the use of LDAFs for solving the
Schrodinger equation and Fokker-Planck equation. LDAFs are constructed by combining the DAF
concept with the Lagrange interpolation scheme. [S0031-9007(97)03702-2]
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Since analytical solutions to most ordinary and partialtively on the function being fit, however). In this Letter
differential equations in theoretical physics are availablave present a new DAF that achieves comparable accuracy
only for a few simple cases, there is great interest in develfor a wider range of DAF parameters.
oping new methods for accurately and efficiently solving DAFs have been introduced [20] as generalized delta
such equations. There are two major approaches availabéequences, for approximating functions of polynomial
for generating numerical solutions, namely, global meth-growth in the domain of definition, accurate to a specified
ods and local methods. For a linear system with relatolerance. In this context, DAFs are able to approximate
tively simple boundary conditions (e.g., the Schrodingetthe identity acting orany physically realizable state. As
equation describing quantum dynamics), global methodspproximations to the identity operator, one can also view
such as spectral and pseudospectral methods [1-9], aBAFs as linearfunctionals The approximate identity
powerful both in terms of accuracy and in minimizing the operator role of DAFs underlies their use to approximate
number of grid points required in order to achieve compu-a function. As members of generalized delta sequences,
tational efficiency. For nonlinear systems, such as aris®AFs tend to the Dirac delta function in the appropriate
in statistical mechanics and fluid dynamics, spectral methlimits of the DAF parameters [21]. However, in contrast
ods are not as useful. Here local methods, such as variotis the Dirac delta function and Gaussian test functions,
finite element [10—12] and finite difference methods [13-which do not have much numerical utility, DAFs are very
19], are typically more robust and are the ones commonlypowerful tools for numerical applications.
used. In general, however, global methods, if applicable, In this Letter we propose a new class of DAFs
are more accurate than local methods. It is highly de{the Lagrange DAF or LDAF), which is constructed
sirable to have a method that possesses global methdy combining Lagrange interpolation type formulas with
accuracy and local method flexibility fdroth linear and  rapidly decreasing weight functions. The relationship
nonlinear systems. Distributed approximating functionalgo earlier DAFs will be examined in more detail in a
(DAFs) [20] provide the basis for such approaches. Al-subsequent paper [22]. As for previous DAFs, the LDAF
though robust, existing DAFs achieve their highest accuean be chosen to generate extremely accurate solutions
racy within a fairly tight functional relationship among the both for time-dependent quantum dynamical problems
DAF parameters (which fortunately do not depend sensiand for eigenvalue problems of the linear Schodinger
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equation. However, our numerical experience [22] hasvhereA; arises from approximating the normalization ex-
been that the LDAF is less sensitive to parameters andression, Eq. (2), by quadrature, and the summation index
is accurate for a wider range of parameters than previous runs over all fundamental grid points. In particular,
DAFs. When used to solve differential equations with theA, = A for a uniform grid. In practice, due to the rapid
LDAF, we use a collocation strategy. fall off of the Gaussian weight, onl@W grid pointsx;,

On the domain oR', the LDAF, defined relative to the which are the “near neighbor” grid points tpneed be in-
point x; on a fundamental, finite, or infinite grid, can be cluded in the sum. Thus, for equal to a grid pointy;,
expressed in the form we need include only¥ grid points on either side ofi: in

St (x| x0) = CePars()we, (x — x1), (1) thesumin Eg. (5). Because of the decay of the Gaussian,
) ' the LDAF is a banded matrix with bandwidtiv + 1
and the Gaussian decay is typically such th@t can be
_ taken to be less than or equal&b
f dx Sy x| ) = 1, @ The gth derivative of the LDAF is analytically ex-
and Py x(x) and w,, (x — x;) are defined below. The pressed as
(non-negative) weightv,, (x — x;) can be chosen for

whereC; is determined from

q

. . . . |
computational convenience. A common weight function 89 Glx) =Y —L—p (x)
used in many DAF applications (including this work) is Mo ,Zo t'(qg — 1! M
the Gaussian function X wf,qk”)(x - x), (6)

W, (8 = xi) = o~ /207 3)

where g is a width parameter. However, it should be
noted that we are not restricted to standard functions

in our choice of weights. Nonstandard weight functions fO%) => Aks,(\}]l,k (x | x)f(xx) (7)
arise naturally in various practical problems (e.g., non- k

Gaussian distributions in statistical mechanics) and can . . I
also be considered. In Eq. (1), the quantity ;(x) is the as the appropriate expression for tih DAF derivative

(unnormalized) Lagrange polyomial defined by of Fhe fun<':tio.n.. In the case qf a uniform Zpacing oz‘k?odal
M points (coinciding with the grid spacind)];%,(x — v;")
Py i(x) = l_[(x - yi(k)), (4)  can be rewritten as
i*k

which gives rise to the equation

M M/2
which vanishes forx = yfk). The indexi labels the set l_[(x - yi(k)) = l_[(x —x; +iA)(x — xx — iA).
of “nodal points” andM} is the set of such nodal points  i#k i=1
used in the construction of the polynomigj; (x). The (8)

nodal points are taken to be positioned relative to grid ) . . ) )
. . () When combined with a Gaussian weight this leads to the
point x; and we require thag; ~ # x;. As an example,

for a uniform and infinite grid, we usually emplay /2 Gaussian Lagrange DAF (or GLDAF)

nodal points,y}k), on either side of the grid pointy,. M/2

Every point on the fundamental grid serves as a referencedm.c(x — x¢) = C l_[(x = x +iA)(x = xp — iA)
point for constructing an associated DAF. In practice, i=1

—(x— 2 2 2
of course, one always uses a finite grid 8f points. X e 0TI (©)
If x; is close to the boundary of the grid, some of the . . . i
nodal points used to form the LDABy, ,. (x | x;) will which explicitly has a Toeplitz structure. Because it is
Ok

be located outside the domain of the fundamental grigSimple and highly accurate, we restrict our consideration
see Ref. [22] for details. We emphasize that the LDAFD this Letter to the uniform GLDAF of Eq. (9). This
need not be limited to a uniform grid, and, as should beform has important potential applications for the comple>§
clear, the LDAF is defined by choosing the sets of nodaP€0ometry boundary value problems often encountered in
points{M};. Another obvious generalization is to replace SC!€Nc€ and engineering.

Py« (x) by a general function whose nodal points are the Ithr tSig“?"(f{i:]y' the g!scuss.ion :n this IF]etter hastrk])een
. . restricted to the one-dimensional case; however, the ex-
y}k). We have studied several choices of g (x), but ' '

X L tension of the GLDAFs to multidimensions is imme-
have not systemqtlcally explored all possibilities. Clearly,diate and straightforward. The simplest procedure for
there are constraints on the allowed form of fheg, (x).

. ; . doing so is to construct a product of one-dimensional
Suitable functlons. can be approximated by the LDAFSGLDAFS. Although nonproduct multidimensional DAFs
through the expression

are of great interest, we shall leave further consideration
) ~SAs x | x0) f(xe). 5 of them to the future. In the remainder of this Letter
f@) g €O (¢ | x)f () ®) we demonstrate the utility, and test the accuracy, of the
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GLDAF (9) by solving an eigenvalue problem describedcomputations and the bandwidth of the GLDAF is 71,
by the Schrodinger equation and by evolving an Ornsteinso W = 35. The uniform step size\ is computed as
Uhlenbeck process in time. These problems illustrate théxy — x;)/(N — 1), wherex, is the first grid point and
accuracy and efficiency of the GLDAF for solving a vari- xy is the last. Note that this means that to generate the
ety of differential equations. approximated, at thegth grid pointx = x,, we include
We first consider a Morse oscillator, which is a com-35 pointsx;s on either side af, in Eq. (5). Ifx, is closer
monly used model potential for diatomic molecules. Thisthan 35 grid points to either end of the grid, the values
is one of the few model systems in quantum mechanicsf ®(x;) outside the fundamental grid are determined by
for which the eigenfunctions are known analytically [23]. boundary conditions. For bound statds(x;) is zero for
They are the generalized Laguerre polynomials [23] x = x; andx = xy. Other situations may require other
_ L o—i.p conditions (e.g., periodic boundary conditions, etc.). In
©n nzze 2Ly (), (10) fact, the result of either requiring thé(x;) to vanish
wherez = Be™ ", p=p —2n —1, 8 =156.047612535,  peyond the boundary or to be periodic results in Egs. (5)
and the normalization constant, obtained using the gerand (7) involving only contributions from = k < N.
erating function of the generalized Laguerre polynomialsthe results of our study and those of Bratral. are listed

[23],is ] in Table I. As seen from the error, ow = 100 grid
I'(p) < P 2 point results are 100 to 1000 times more accurate than
Ny = Z(_l) < ¥ ) (11)  those of Brauret al, although we employ significantly
r=0 fewer grid points. It is to be noted that otyr = 80 grid
The exact expression for the eigenvalues is point results are still about 1000 times better than those
1 1 1\2 of Braunet al. for the low eigenvalues and are 30 times
E,=«k|ln+ — — —<n + —) , (12)  better for the highest ones in the Table 1. Of course, even
2 B 2 . . . ; :
higher accuracy could be easily achieved by increasing

where k = 5.741 837286 X 10~* a.u. We specifically the density of grid points. It should be emphasized that
consider the J molecule to test the accuracy of the the DAF method is inherently local (i.e., the DAF has
GLDAF method. The Morse potential for this molecule @ finite bandwidth of2W + 1), and hence an increase

is given by in the number of fundamental grid poinf¢ does not
_ dax o~ —ax automatically lead to an increase either in the degree
V(x) = Dle 2¢]+ D, (13) of the DAF polynomial or the bandwidth of the DAF.

where D = 0.0224 a.u, « = 0.9374 a.u. The reduced Consequently, the computation time does not increase as
mass for this system ig = 119406 a.u. This system has rapidly with total grid sizeNV as in some commonly used
recently been studied computationally by Bratrel. [8]  spectral methods or pseudospectral methods.

using an efficient Chebyshev-Lanczos method and a grid We next consider the (stationary and Markovian)
of 128 points to achieve an accuracy ranging from seve®rnstein-Uhlenbeck process [24,25], describing a linear
to nine digits. Our calculation makes use of the directdrift-diffusion system. It has been used for various physi-
diagonalization of the GLDAF-Hamiltonian matrix. The cal applications, such as to describe a laser field far below
GLDAF parameters ard/ = 80 and o/A = 3.173 for  (or above) its threshold [25], a linear overdamped oscilla-
this example. We us¥ (the total number of fundamental tor in the presence of colored Gaussian noise [26], and the
grid points) equal to 100 and 80 (for a convergencevelocity relaxation of a Rayleigh gas [27]. The process
comparison) on the interval ¢f-0.8,2.0] in our present provides an important benchmark problem for testing

TABLE I. Results for the 1D 4 Morse oscillator.

k Analytical [23] Differencé Difference’ Difference
0 0.852996 623 626 694 2E-03 —0.10E-10 —0.14E-13 —0.14E-13
1 0.1412462184629706E-02 —0.30E-10 —0.43E-13 —0.43E-13
2 0.196 456 866 183 422 4E-02 —0.50E-10 —0.70E-13 —0.70E-13
3 0.250931 605 524 024 7E-02 —0.70E-10 —0.98E-13 —0.98E-13
4 0.304670436 484 777 7TE-02 —0.89E-10 —0.13E-12 —0.13E-12
5 0.357673 359065 681 3E-02 —0.11E-09 —0.15E-12 —0.15E-12
10 0.6116493462724579E-02  —0.20E-09 —0.28E-12 —0.28E-12
15 0.8472276239829993E-02  —0.28E-09 —0.25E-12 —0.40E-12
20 0.1064408192197306E-01  —0.36E-09 0.96E-11 —0.30E-12

aBraunet al. (Ref. [8], N = 128).
bPresentN = 80).
‘Presen{N = 100).
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numerical time propagation methods and various newi) As with most numerical methods, they transform ordi-
numerical schemes [28]. Unlike the Schrodinger equationpary and partial differentiations to a linear algebraic form,
it involves both first and second derivatives. The Fokkerwhich reduces the calculation to matrix-vector multiplica-
Planck equation corresponding to the process is given bytions. (ii) The GLDAF has been shown elsewhere [22]
af(x,1) Axf(x,0)] 02f(x,1) to be a particular realization of the generalized DAFs dis-
ar P) + DT . (14 cussed in Ref. [21], and as such, is a special kind of spec-
where y and D are positive constants. With an initial tral method which gives rise to a highly banded matrix
Dirac delta function distribution localized at,, the representation of derivatives. In this regard, DAFs lead to
analytical solution of the Ornstein-Uhlenbeck Fokker-@ Structure which is similar to finite difference and finite

Planck equation is known and is given by element methods. In the case of the GLDAF, the Gauss-
ian factor produces the banded structure, and this struc-
flx, 1) = |: Y ture is therefore a reflection of the “local” character of the
2Dm(1 — 27 0) basis functions. Thus, the DAF method for fitting func-
y(x — xpe ~2Y(t=h))2 tions possesses the best features of both local and global
X expg — 2D(1 — e~ 2i—n)) |’ approaches. (iii) In comparison to spectral methods and

) . o finite element methods, the DAF approach is extremely
A stationary Gaussian distribution results whev —  gimple and entails low CPU cost due to its slow scaling
fo) > 1. , with problem size. In addition, the banded DAF matri-
In the present computationy, and D are chosen 10 ¢eg (on an evenly spaced grid) have a Toeplitz structure
be 0.25 and 0.125, respectively. The GLDAF parametergefiecting translational invariance of the basis) and are
are taken to ba/ = 100, so a polynomial of degree 100 gymmetric. This greatly reduces the storage requirements.
is employed in Eq. (9), and/A = 2.88. Two sets of () Because the DAF has the form of a convolution, the
fundamental grid points\ = 51, 101) are used with cor-  a¢tion of the DAF matrix on a vector can be evaluated by
responding intervals taken as§, 5] and [-5.5,5.5], re- using fast Fourier transforms.

spectively, and\ = (xy — x)/(N — 1). In calculations This work was supported under R.A. Welch Foun-
|nvoIV|r_1g Egs. (5) anc{ (7), the boyndary condition iM- 4ation Grant No. E-0608 and an NSERC grant
posed is that the functiofi(x,, r) vanishes foik < 1 and (G.W.W.), under R.A. Welch Foundation Grant No. E-
k > N. Various values of¥ were tested and the results ogpg (D.'S.Z.), and under National Science Foundation
were found to be insensitive to it, provided it was largergrant No. CHE-9403416. R. A. Welch Foundation Grant
than 26; typical calculations were done with equal o N E.0608, and an Advanced Research Program grant
35. The initial delta functions were located &0.55  from the Texas Higher Education Coordinating Board
and —0.50, respectively, and the time increments use D.J.K.). The Ames Laboratory is operated for the

were 0.05 and 0.01, re_spectively. We refer the readert@epartment of Energy by lowa State University under
Ref. [29] for more details. Thé., and L.. errors, for a Contract No. 2-7405-ENG82.
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