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Lagrange-distributed approximating-functional approach to wave-packet propagation:
Application to the time-independent wave-packet reactant-product decoupling method
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A connection is made between a recently introduced Lagrange-distributed approximating-functional and the
Paley-Wiener sampling theorem. The Lagrange-distributed approximating-functional sampling is found to
provide much superior results to that of Paley-Wiener sampling. The relations between discrete variable
representation and Lagrange-distributed approximating functionals are discussed. The latter is used to provide
an even spaced, interpolative grid representation of the Hamiltonian, in which the kinetic energy matrix has a
banded, Toeplitz structure. In this paper we demonstrate that the Lagrange-distributed approximating-
functional representation is an accurate and reliable representation for use in fast-Fourier-transform wave-
packet propagation methods and apply it to the time-independent wave-packet reactant-product decoupling
method, calculating state-to-state reaction probabilities for the two-dimensional~collinear! and three-
dimensional (J50) H1H2 reactions. The results are in very close agreement with those of previous calcula-
tions. We also discuss the connection between the distributed approximating-functional method and the exist-
ing mathematical formalism of moving least-squares theory.@S1050-2947~98!07805-6#

PACS number~s!: 03.65.Db
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I. INTRODUCTION

Wave-packet propagation is now one of the most co
monly used methods for solving the Schro¨dinger equation
for molecular dynamics@1–12#, especially for multidimen-
sional systems in such areas as reactive scattering@3,5,6#,
gas-surface scattering@2,6#, and molecular photodissociatio
@7,8#. The advantages of wave-packet methods~over conven-
tional time-independent methods! are that they generate re
sults over a continuous range of energies, and that they s
better thanN2 ~whereN is the number of basis functions!
@2#. Because of the latter advantage, wave-packet meth
have now been successfully applied to, for example, the@six-
dimensional~6D!# H1H2O reaction @10# ~and its inverse
@11#!, and the~6D! dissociative absorption of H2 on Cu~III !
@12#.

An important contribution to the success of wave-pac
~and related! methods has been the development of discr
grid representations of the Hamiltonian, particularly wh
combined with fast-Fourier-transform~FFT! algorithms
@1,5,6,13#. When applying the latter, an equally spaced g
of points is distributed along each coordinate, enabling
propagation to switch, by FFT, between coordinate space~in
which the potential is diagonal! and momentum space~in
which the kinetic energy operator is diagonal!. The propaga-
tion then scales only asNlnN. One of the most familiar grid
representations to be used in this way is the~equally spaced!
discrete variable representation@14# ~DVR! which, being a
basis set expansion method, provides aglobal approximation
to the exact wave function at each grid point~by which we
mean that all the grid points contribute to the derivatives
the wave function at a given point!. In a recent series o
571050-2947/98/57~5!/3309~8!/$15.00
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papers, an alternative grid representation, thedistributed ap-
proximating functional~DAF!, has been developed as
novel, powerful approach for spatial discretization, whi
provides an accurate and efficient representation of the w
function of a quantum system during its dynamical evoluti
@15–20#. The spectral method accuracy of our DAF approa
has recently been demonstrated by solving the Fokk
Planck equation and the Schro¨dinger equation@21,22#. To
avoid the global property of the DVR and FFT represen
tions, and yet retain spectral method accuracy, so as to m
the calculation as efficient as possible, the DAF has b
constructed to provide, at each point, a complete basis
expanding the wave packet. Upon truncation, one obtain
localized DAF propagator~in coordinate space!, which has a
highly banded Toeplitz matrix structure, both in continuo
and discretized coordinate spaces. As a result, these D
can be applied using fast-Fourier-transform methods, w
the scaling depending on the bandwidthW, according to
N ln W @15#. This endows the DAFs with certain advantag
over global methods for large-scale computations. This
calized operator is due to the combined effects of the Ga
ian factor in the Hermite DAF and the truncation in the He
mite polynomial expansion. It is interesting to note that t
truncation in other spectral methods generally induces Gi
oscillations@23#, but the Hermite DAF does not have th
problem. Owing to the truncation, DAFs are no longer nor
preserving propagators. As a consequence, one may pr
gate safely only for a finite number of time steps. Sta
differently, the DAF propagator is constructed to be us
only for a specific DAF class of wave packets composed
those which can, to a predetermined accuracy, be appr
mated as an (M11)th-degree polynomial under the DA
envelope. Moreover, the DAFs can always be chosen to
3309 © 1998 The American Physical Society
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vide an excellent approximation to anyL2 band-limited func-
tion. Thus, in place of a norm-preserving continuous DA
one has a DAF which is the identity for an (M11)th-degree
polynomial. Since noL2 wave packet iseverexactly a poly-
nomial, one has the approximate nature of the DAF pro
gation. One may propagate only for a finite number of tim
steps; the parameters of the DAF, however, can be cho
such that the propagation can be for as long as is required
a given system. This property can be understood better u
the momentum representation of the DAFs. For a given
of finite, nonzero DAF parameters, DAFs are optimized lo
pass filters in the momentum representation. They bec
ideal all-pass filters when the parameters are chosen
that the DAF approaches the Diracd function. In this regard,
for a finite grid system, both the DVR and FFT methods
also restricted to band-limited functions.

The localized property of the DAF method indicates th
it can be an ideal method both for nonlinear partial differe
tial equations and for irregular boundary problems. In su
cases global methods become much more cumbersom
implement, so that various local methods, such as finite
ference and finite element schemes, are commonly used.
former is widely used for nonlinear quantum dynamics. T
latter is a basic tool for engineering problems. In the m
recent series of studies, for the examples considered,
DAFs were shown to provide the most accurate and simp
approach to a variety of nonlinear problems, including
nonlinear Schro¨dinger equation, the Klein-Gordon equatio
the sine-Gordon equation@24,25#, the nonlinear Fokker-
Planck equation@26#, Burgers’s equation@27#, including
Reynolds numbers as high as 105 @28#, and the first ever
solution of the Kuramoto-Sivashinsky equation in a circu
domain @29#. The success of the DAF method in nonline
dynamics has established it as an important approach f
wide range of linear and nonlinear problems.

One of the purposes of this paper is to introduce the
cently developed Lagrange DAFs~LDAFs! @30# as a discrete
grid representation with which to represent the Hamilton
in FFT wave-packet propagation methods. The LDAFs
constructed by combining the DAF idea with the Lagran
interpolation formula. In this regard, they provide a link b
tween DAFs and DVRs. Another important property of t
LDAFs is that they provide accurate spatial discretizat
and derivatives for a wide range of LDAF parameters. T
previous Hermite DAF, on the other hand, does this only
its well-tempered limit, which is governed by a correlatio
between the DAF parameters and the grid spacing.

This paper is organized as follows. In Sec. II the LDA
formalism is reintroduced from a different standpoint fro
that of the original work@30,31#. In particular, we analyze
the advantages and disadvantages of a mathematical the
from a physical point of view, and then introduce our LDA
in the framework of this mathematical formalism. In Sec.
we describe an application of the LDAF to a wave-pac
propagation method, thetime-independent wave-pack
~TIW! reactant-product decoupling~RPD! method, which
has recently been developed@16–18,33# for calculating state-
to-state reaction probabilities. We apply the method to
2D ~collinear! and 3D (J50) H1H2 reactions. In Sec. IV
we give a brief discussion of the LDAF approach, includi
connections between the general DAF theory, as well as
,
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existing mathematical formalism of moving least-squa
theory. Section V concludes the paper.

II. THE LAGRANGE-DISTRIBUTED APPROXIMATING
FUNCTIONAL

The LDAF was originally developed in close contact wi
the DAF approach to construct a computationally useful
proximation to the Diracd function. In this section we shal
start from a different perspective. In their classic work, Pa
and Wiener@34# showed that for anL2 function f which is
bandlimited toh, i.e., its momentum representation is ide
tically zero outside the bandh\, its valuef (x) at an arbitrary
point x can beexactlyrecovered from a set of~not necessar-
ily uniform! discrete ‘‘sampling points’’$xk%,

sup
kPZ

Uxk2
kp

h U, p

4h
~1!

by the following Lagrange-type interpolating series:

f ~x!5(
2`

`

f ~xk!Sk~x! ~xPR!, ~2!

where

Sk~x!5
G~x!

G8~xk!~x2xk!
~3!

is the Lagrange-type sampling function. The symbolZ de-
notes the set of all integers. HereG(x) is an entire function
given by

G~x!5~x2x0!)
k51

` S 12
x

xk
D S 12

x

x2k
D , ~4!

andG8 denotes the derivative ofG. Equation~2! is called a
Paley and Wiener sampling theorem in the mathematical
erature and can be regarded as a generalization of the
sical Lagrange interpolation formula to the real line (R) for
functions of the exponential type. Unlike the classic
Lagrange interpolation formula, Eq.~2! contains infinitely
many terms, and we stress that it yields the exactf (x) for all
realx. Thus the interesting point is that the information of
continuous function~containing a compact set of frequen
cies! on the real line (R) can be entirely embedded in a
infinite, but discrete irregularly placed set of sampling poin
~grid points!. Condition ~1! is the best one can have@34#.
There will be an aliasing error if the grid mesh is larger th
is allowed by condition~1! or if the function f (x) is not
bandlimited toh. The major disadvantage of Eq.~2! is that it
converges slowly. In practice, neither computational nor
perimental data can ever be obtained at an infinite se
discrete sampling points. From a mathematical point of vie
a bandlimited~i.e., compact support in Fourier space! func-
tion cannot have compact support in the coordinate repre
tation unless it is identically zero. From a physical point
view, physical measurements cannot be conducted for an
finite duration, therefore physically realizable states are
Schwartz space functions@32# ~i.e., rapidly decaying func-
tions!, which can be treated as effectively bandlimited
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57 3311LAGRANGE-DISTRIBUTED APPROXIMATING- . . .
both the momentum and coordinate representations. T
suggests that one can truncate Eq.~2! and still obtain reason
able results. A simple way of achieving this is to introduce
weight functionwk(x) into the right-hand side of Eq.~2!.
This heuristic approach leads to theapproximateequation,

f ~x!'(
2`

`

f ~xk!Sk~x!wk~x!. ~5!

A commonly used weight function on the real lineR is the
Gaussian

wk~x!5e2~x2xk!2/2sk
2

~0,s,`!. ~6!

Note that the approximate equation~5! becomesexactin the
limit that sk approaches infinity. Moreover, assk tends to
zero Sk(x)wk(x) behaves like a ‘‘semicontinuous’’ Diracd
function,

lim
sk→01

1

A2psk

G~x!

G8~xk!~x2xk!
e2~x2xk!2/2sk

2

5
G~x!

G8~xk!~x2xk!
d~x2xk!. ~7!

We call this type of distribution a ‘‘Kroneckerd function’’
@31#. This is effectively ad function because

lim
x→xk

G~x!

G8~xk!~x2xk!
51. ~8!

For a finite set of sampling points$xk%k51
M which are distrib-

uted in the nearest-neighbor region of pointxk , we have the
following LDAF expression:

dM~x2xkusk!5)
iÞk

M
x2xi

xk2xi
e2~x2xk!2/2sk

2
. ~9!

An L2 , bandlimited function can be approximated by t
LDAFs through the expression

f ~x!' (
k52W

W

dM~x2xkusk! f ~xk!. ~10!

In practice, due to the rapid falloff of the Gaussian weig
only 2W grid pointsxk , which are the ‘‘nearest-neighbor’
grid points tox, need be included in the sum. Forx equal to
a grid pointxk , we need include onlyW-grid points on either
side ofxk in the sum in Eq.~10!. Thus, owing to the decay o
the Gaussian, the LDAF matrix is banded and the Gaus
decay is typically such that the bandwidth can be taken to
less than or equal toM . The total number of sampling
points,N, is generally much larger thanM . In many practi-
cal applications, a uniform grid is very convenient. Cor
spondingly, a useful LDAF expression for a uniform grid
given by

dM~x2xkus!5)
i 51

M /2 S x2xk1 iD

iD D S x2xk2 iD

2 iD De2~x2xk!2/2s2
,

~11!
is

a

,

an
e

-

which has an explicit Toeplitz structure. This expression w
be used in Sec. III in the reactive scattering application.

It is well known that the Lagrange interpolation reduc
to a sinc kernel on a uniform infinite grid (xk5kD52x2k).
This is because Eq.~4! becomes

G~x!5x )
k52`,kÞ0

` S 12
x

kD D ~12!

5x)
k51

` S 12
x2

k2D2D ~13!

5D
sin~p/D!x

p
. ~14!

Taking account ofG8(xk)5(21)k, then Eq.~3! gives rise to

Sk~x!5
~21!k sin~p/D!x

~p/D!~x2kD!
~15!

5
sin~p/D!~x2xk!

~p/D!~x2xk!
. ~16!

This is the well-known sinc kernel. It follows that an alte
native expression of LDAF kernel in Eq.~5! on uniform grid
is

d~x2xkus!5
sin~p/D!~x2xk!

~p/D!~x2xk!
e2~x2xk!2/2s2

. ~17!

In this form, our LDAF sampling, Eq.~5!, can be easily
compared with Paley-Wiener sampling, Eq.~2!, with Sk(x)
given by Eq.~16!. We choose three very different function
f 1(x)5e2x/5(cos 5x1sinx), f 2(x)5cos 5x1sinx, and
f 3(x)5e2x2/100(cos 5x1sinx), for this comparison. A vari-
ety of sampling bandwidths 2W11 is used with the grid
spacing being fixed asD5p/23. L` sampling errors are cal
culated for 40 off-grid values in the interval of@0,p#. We
chose the LDAF parameters/D53.3. As listed in Table I,
for the non-L2 function f 1(x), the Paley-Wiener sampling
becomes worse when the bandwidth increases. It conve
very slowly for the second functionf 2(x). Only in the case
of the Schwartz class functionf 3(x) does the Paley-Wiene
sampling reach machine accuracy when the sampling ba
width is 1025 grid points. In contrast, the LDAF samplin
delivers machine accuracyfor all casesat a bandwidth of 65
grid points. Other tests show that the expression~11! pro-
vides the same level of accuracy and rate of convergence
the above test problems as the expression~17!. However, in
the case of even grid spacing, the sinc form of the LDAF
actually simpler to use. In the case of nonuniform grids,
adaptive boundary problems, the more general express
Eq. ~9!, should be used.

The performances of the LDAF and Paley-Wiener sa
plings can be understood from their Fourier space behav
In Fourier space, the Paley-Wiener sampling kernel is
ideal low-pass filter, which is unsmoothed, compactly su
ported function without any differentiability. By contrast, th
LDAF is a smoothed, effectively compactly supported lo
pass filter with arbitrary order differentiability. As a cons
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TABLE I. L` errors of Paley-Wiener and LDAF samplings. Numbers in brackets denote powers of 1

W

e2x/5(cos 5x1sinx) cos 5x1sinx e2x2/100(cos 5x1sinx)

Paley-Wiener LDAF Paley-Wiener LDAF Paley-Wiener LDAF

32 1.53@23# 8.88@216# 9.05@23# 1.78@215# 5.04@23# 1.33@215#

64 6.31@23# 8.88@216# 3.00@23# 1.78@215# 5.31@24# 1.33@215#

128 8.02@22# 8.88@216# 2.32@23# 1.78@215# 1.09@24# 1.33@215#

256 8.27@21# 8.88@216# 5.72@24# 1.78@215# 3.46@28# 1.33@215#

512 3.93@13# 8.88@216# 4.74@24# 1.78@215# 2.88@215# 1.33@215#

1024 3.65@19# 8.88@216# 3.06@24# 1.78@215# 2.88@215# 1.33@215#
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quence of their smoothness, characterized by infinite dif
entiability, the LDAFs are not only applicable to a grea
class of functions, but they also efficiently smooth out Gib
oscillations. Some other aspects of the sinc form of
LDAF, Eq. ~17!, will be given in Ref.@35#. A unified de-
scription of sampling theorems and DAFs will be presen
elsewhere.

For solving partial differential equations~PDEs!, the most
important element is an accurate representation of diffe
tiation operators. The success of DAFs for linear and non
ear PDEs is due to their ability to represent derivativeslo-
cally with spectral method accuracy. Theqth derivative of
the LDAF is analytically expressed as

dM
~q!~x2xkusk!5(

t50

q
q!

t! ~q2t !! S )
iÞk

M
x2xi

xk2xi
D ~ t !

wk
~q2t !~x!.

~18!

We therefore approximate the action of theqth derivative
operator as

]q

]xq f ~x!5 f ~q!~x!'(
k

dM
~q!~x2xkusk! f ~xk!. ~19!

This local approximation of derivatives serves as a basis
solving partial differential equations of both the linear a
nonlinear type.

For simplicity, the discussion so far has been restricted
the one-dimensional case; however, the extension of
LDAFs to multidimensions is immediate and straightfo
ward. In this work, we simply use the product of on
dimensional LDAFs in multidimensional problems. In th
remainder of this paper we demonstrate the utility, and
the accuracy, of the LDAF~11! for two- and three-
dimensional reactive scattering. The LDAF parameters
chosen ass53.173,M580, andW532 throughout.

III. EXAMPLE CALCULATION

We now consider an example application of the LDAFs
a recently developed wave-packet propagation method,
time-independent wave-packet reactant-product decoup
method @16–18,33#. This is a method for calculating th
state-to-state reaction probabilities, which we shall here
ply to the 2D~collinear! and 3D (J50) H1H2 reactions.
r-
r
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d
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r

to
e
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A. The TIW reactant-product decoupling equations

The RPD equations are a rigorous formulation
quantum-mechanical reactive scattering recently propose
Peng and Zhang@33#. The ~time-dependent! reactive scatter-
ing wave functionx(t) is partitioned as

x~ t !5x r~ t !1(
p

xp~ t !, ~20!

wherex r(t) andxp(t) satisfy

i\
]x r~ t !

]t
5Hx r~ t !2 i(

p
Vprx r~ t !, ~21!

i\
]xp~ t !

]t
5Hxp~ t !1 iVprx r~ t !. ~22!

The advantage of this formulation is that the absorbing
tentials2 iVpr ensure that each ofx r(t) and xp(t) is con-
fined to just one arrangement of the reaction:x r(t) is con-
fined to the reactant~or r ! arrangement because each2 iVpr
blocks off thepth product arrangement;xp(t) is confined to
the pth product arrangement~for a given p! because
2 iVprxp(t) is a ~time-dependent! source term which propa
gates down the product channel towards the asymptote.

Peng and Zhang@33# have developed a propagator fo
calculatingx r(t) andxp(t) which is based on the modifie
Cayley propagator@36#. In later work@16–18#, some of the
authors of the present paper developed a propagator base
the Chebyshev propagator, by half Fourier transforming
original time-dependent RPD equations@Eqs. ~20!–~22!# to
their time-independent wave-packet@37# form. In the latter,
the TIW wave function for reactive scatteringj1(E) is par-
titioned as

j1~E!5j r
1~E!1(

p
jp

1~E!, ~23!

wherej r
1(E) andjp

1(E) satisfy

j r
1~E!5

i

2p
GG

1~E!x~0!, ~24!

jp
1~E!52G1~E!Gpr~E!j r

1~E! for each p. ~25!
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Instead of the absorbing potentials2 iVpr of Eqs.~20!–~22!,
these TIW equations contain a set of energy-dependent
sorbing potentialsGpr(E) ~which are explained in Ref.@17#!.
G1(E) andGG

1(E) are the Green functions corresponding
H and toH1SpGpr(E), respectively.

In our method@17# of solving Eqs.~23!–~25!, we propa-
gate the solutionsjl

1(E) (l5r ,p) by expanding them in
the form

jl
1~E!5

1

2pDH sin f (
n50

N

e2 infhln , ~26!

where cosf5(E2H̄)/DH, andH̄ andDH are scaling param
eters. The hln are a set of energy-independentbasis
functions which are generated by repeatedly applying
scaled HamiltonianHnorm5(H2H̄)/DH according to a
Chebyshev-like propagation scheme~details of which are
given in Ref.@17#!. The propagation scheme takes full a
vantage of the form of the TIW-RPD equations, so th
when generatinghln , it is only necessary to evaluate th
action ofH within the l arrangement.

B. Application to the 2D and 3D H1H2 reaction

We tested the LDAF representation by solving the TIW
RPD equations~as summarized above! for the 2D~collinear!
and 3D (J50) H1H2 reactions, neglecting breakup, on th
Liu, Siegbahn, Truhlar, and Horowitz@38# potential energy
surface. Many details of the calculations are the same a
our previous work of Refs.@17# ~for the 2D reaction! and
@18# ~for the 3D reaction!, so we shall concentrate here o
what is particular to the LDAF calculations.

In both the 2D and 3D calculations we representedH in
r -arrangement Jacobi coordinates@when propagatingj r

1(E)#
or p-arrangement Jacobi coordinates@when propagating
jp

1(E)#. One may define ther and p arrangements of the
reaction by specifying which H atom correlates with the is
lated H2 molecule in the asymptotic limit. The arrangeme
Jacobi coordinates are thenr—the distance between the pa
of H atoms,R—the distance between the third H atom a
the center of mass of the pair, and~for the 3D reaction!
u—the angle betweenr andR. For the 2D reaction there i
just onep arrangement. For the 3D reaction there are twop
arrangements, but since they are identical we need propa
only onejp

1(E).
The grid representations were constructed as follows

both arrangements of the 2D reaction, we representedr and
R in the LDAF representation@that is, we represented th
second derivative matrix by Eq.~19!, with q52#. In the r
arrangement of the 3D reaction, we also representedr andR
in the LDAF representation. In thep arrangement~of the 3D
reaction! we representedR in the LDAF representation andr
in the DVR obtained from the H2 vibrational wave functions
~since the latter are a very good basis once the H atom is
enough away from the H2 molecule!. In both arrangements
of the 3D calculation we representedu in the Gauss-
Legendre DVR.

Each LDAF representation was constructed using
same evenly spaced grid as that used for the correspon
Hermite DAF representation in Refs.@17,18#. We evaluated
b-

e

,

-

in

-
t

ate

In

ar

e
ing

the action of the LDAF kinetic energy operators efficien
by means of the~standard! FFT convolution algorithm
@13,39#. An important step in solving the TIW RPD equa
tions is the fitting of a set ofn-dependent source terms@lo-
cated in the region ofGpr(E)# from r -arrangement to
p-arrangement coordinates. In performing this fitting, w
employed the LDAF approximation to the Diracd function
@given by Eq.~19! with q50# in the same way that we use
the Hermite DAF in Refs.@17,18#.

In all other respects, the calculations were identical
those of Refs.@17,18#, except for two further details. In the
2D calculation we did not include an exponential factor
the absorbing potentials†see Eqs.~26! and ~27! of Ref.
@17# ‡. In both calculations we used slightly larger values
the scaling parametersDH andH̄ @see Eq.~26! above#, set-
ting both parameters to 0.7 a.u. in the 2D calculation, and
a.u. in the 3D calculation. The latter change was neces
because the spectrum of the LDAF Hamiltonian covers
slightly broader energy range than that of the Hermite D
Hamiltonian for the present choice of DAF parameters.

The results of the 2D LDAF calculation are shown
Table II, where they are compared with the results of a H
mite DAF calculation~which was repeated using the sam
absorbing potentials and scaling parameters as in the LD
calculations!, and with theS-matrix Kohn variational~SKV!
results of Colbert and Miller@40#. All three sets of results are
clearly in very good overall agreement~to better than a few
percent!. The LDAF and Hermite DAF results agree to bett
than three significant figures~with the exception of the very
small numbers!. The results of the 3D LDAF calculation ar
shown in Figs. 1 and 2, where, again, there is evidently v
close agreement between the results of the LDAF and of
Hermite DAF @18# calculations.

IV. DISCUSSION

From previous work@30#, we know that the Hermite DAF
yields a very accurate and reliable representation of
Hamiltonian when used in FFT wave-packet propagat
methods. Hence the very close agreement between the LD
and Hermite DAF results~as reported in Table II and in Figs
1 and 2! demonstrates that the LDAF propagator yields
similarly accurate and reliable representation of the Ham
tonian. Like the Hermite DAF, the LDAF has a bande
Toeplitz structure, enabling the kinetic energy matrix to

TABLE II. State-to-state reaction probabilities calculated for t
2D ~collinear! H1H2 reaction, using the LDAF and Hermite DAF
~HDAF! discrete grid representations. Also shown are the S
results of Colbert and Miller taken from Ref.@40#.

Energy
Transition ~eV! LDAF HDAF SKV

0→0 0.5 8.265 731022 8.265 931022 8.331022

0.8 0.941 66 0.941 85 0.938
1.1 0.300 78 0.300 76 0.296
1.4 5.804 731022 5.805 331022 5.9631022

0→1 0.8 1.078 031024 1.067 231024 3.7431025

1.1 0.380 80 0.380 78 0.380
1.4 0.232 65 0.232 64 0.224
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applied very efficiently by means of a FFT convolution a
gorithm. The advantage of the LDAF over the Hermite DA
is that the former yields results which are relatively insen
tive to the choice of the DAF width and truncation para
eters@31#.

Unlike the original introduction of the LDAF, the intro
duction in this paper is based on the mathematical formal
of Paley-Wiener sampling theory@34#. As a consequence
the LDAFs become exact whensk approaches infinity. The
analog of thesk→` andM→` for the Hermite DAF is to
takeM→` with s fixed andD→0. Physical arguments ar
presented to motivate our choice of ‘‘window function
wk(x).

In recent work we have also shown@31# that the LDAF is
related to a more general class of DAFs, which are c
structed by a pointwise least-squares variational princ
@15~b!#. In such DAFs, everyx point has the same basis s
relative to a fixed originbut not relative to the local origin
These general DAFs are especially efficient and powerful
systems that have uniform grids. For nonuniform grid s
tems, a pointwise adaptive DAF can be used. In particu
everyx point has its own basis set with coefficients obtain

FIG. 1. State-to-state reaction probabilitiesR(n050,j 050→n
50,j ) calculated for the 3D (J50) H1H2 reaction forj 50 ~solid
line!, j 51 ~dashed line!, j 52 ~dotted line!, and j 53 ~chained
line!. The curves are the results of solving the TIW RPD equati
using the LDAF representation as described in Sec. III. The po
~taken from Ref.@18#! are the results of solving the TIW RPD
equations using the Hermite DAF representation.

FIG. 2. Same as Fig. 1 forR(n050, j 050→n51,j ).
i-
-

m

-
le

r
-
r,
d

by application of the DAF variational principle. Therefore a
accurate global approximation is constructed through
variation-generated local basis on each grid point. We n
that this general DAF theory is intimately connected to t
mathematical structure known as moving least-squa
theory or moving least-squares reproducing kernels@41–46#.
However, it is known that satisfying the moving leas
squares reproducing kernel requirements is not sufficient
constructing an accurate and efficient computational sche
In fact, to our knowledge, none of the existing moving lea
squares methods has been used previously to generate
our Hermite or Lagrange DAFs. The moving least-squa
reproducing kernel methods, however, have been wid
used for various computational problems, such as surf
generation@42,47,48# and solving PDEs@46#. Most of this
work focuses on constructing interpolating kernels since
terpolating formulas have been regarded as better than
interpolating ones. For solving PDEs, where only the on-g
values of a function are ever required, one does find that
interpolating DAFs yield more accurate results over a w
range of parameter space. However, in other applicatio
such as potential surface fitting and noise filtering, nonint
polating kernels can have significant advantages over the
terpolating ones, and as shown by our earlier work, the n
interpolating Hermite DAFscan yield the same level of
accuracy as the LDAFs, so long as anaccurate, well-
tempered DAF is employed.

Colbert and Miller@40# have shown that the sinc kerne
Eq. ~15!, is the sine-DVR on the infinite grid. Therefore on
uniform infinite grid, the LDAF can be regarded as a sin
DVR with an extra weight, which is a ‘‘windowed sine
DVR.’’ The concept of window functions is widely used i
science and engineering. For example, the windowed Fou
transform is an important tool in signal and image proce
ing. Since the windowed Fourier transform is one of t
important ideas behind wavelet transforms, it is likely th
LDAFs are closely related to wavelet theory~particularly the
theory of frames!, which is one of the most rapidly develop
ing subjects in applied mathematics of recent years, w
many applications. This connection is under investigati
Moreover, from a mathematical standpoint, it is possible
construct generalized Lagrange sampling theorems base
the nodes of various special functions, such as Legendre
Bessel functions, and various polynomials, such as Lagu
polynomials. Correspondingly, it might be possible to co
struct LDAFs based on those node points. We shall exp
this possibility in future work. Finally, DAFs can be con
structed for arbitrary sampling schemes@so long as they ac-
curately approximate the sum in Eq.~5!#, so they are not
restricted to Gaussian-type quadratures. Using the pointw
variational principle, a DAF representation of a function c
be obtained forany sampling scheme.

V. CONCLUSIONS

In this paper the connection is made between
Lagrange-distributed approximating-functional~LDAF! and
the Paley-Wiener sampling theorem. LDAF sampling
compared with the Paley-Wiener sampling for three differ
functions. Our results indicate that LDAF sampling perform
much better than Paley-Wiener sampling or sine DVR sa

s
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pling. The LDAF requires a much smaller sampling ban
width to deliver machine accuracy when the impulse fu
tion is rapidly decaying. The convergence of the Pal
Wiener sampling becomes extremely slow when the impu
function is trigonometric~which is almostL2!. The Paley-
Wiener sampling does not work for an exponentially gro
ing function. However, our LDAF still provides machine a
curacy in each case.

We have employed a procedure showing how LDAF m
be used to construct a discrete grid representation of
Hamiltonian, in which the grid points are distributed
equally spaced intervals, and the kinetic energy matrix ha
banded, Toeplitz structure. The action of the LDAF Ham
tonian can thus be evaluated efficiently by means of the s
dard FFT convolution algorithm, making the LDAF a su
able representation for use in wave-packet propagation~and
related! methods.

We have tested the LDAF representation by employin
in the recently developed time-independent wave-pac
reactant-product decoupling method, calculating state
state reaction probabilities for the 2D~collinear! and 3D (J
50) H1H2 reactions. The results are in very good agre
, J

E.
i-
r,

d

.

hy

m

m

J.
-
-
-
e
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y
e

a

n-

it
et
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ment with the results of previous calculations, in which t
Hamiltonian was represented by the analogous Hermite D
grid representation. Unlike the latter results, however,
results of the LDAF calculation are less sensitive to t
width and truncation parameters of the DAFs, so that
LDAFs are easier to use than the Hermite DAFs for solv
partial differential equations using uniform grids.
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