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A connection is made between a recently introduced Lagrange-distributed approximating-functional and the
Paley-Wiener sampling theorem. The Lagrange-distributed approximating-functional sampling is found to
provide much superior results to that of Paley-Wiener sampling. The relations between discrete variable
representation and Lagrange-distributed approximating functionals are discussed. The latter is used to provide
an even spaced, interpolative grid representation of the Hamiltonian, in which the kinetic energy matrix has a
banded, Toeplitz structure. In this paper we demonstrate that the Lagrange-distributed approximating-
functional representation is an accurate and reliable representation for use in fast-Fourier-transform wave-
packet propagation methods and apply it to the time-independent wave-packet reactant-product decoupling
method, calculating state-to-state reaction probabilities for the two-dimensico#inea) and three-
dimensional §=0) H+H, reactions. The results are in very close agreement with those of previous calcula-
tions. We also discuss the connection between the distributed approximating-functional method and the exist-
ing mathematical formalism of moving least-squares thel®$050-294{@8)07805-9

PACS numbd(s): 03.65.Db

[. INTRODUCTION papers, an alternative grid representation,distributed ap-
proximating functional(DAF), has been developed as a
Wave-packet propagation is now one of the most comfovel, powerful approach for spatial discretization, which
monly used methods for solving the Sctimger equation provides an accurate and efficient representation of the wave
for molecular dynamic§1—-12], especially for multidimen- function of a quantum system during its dynamical evolution
sional systems in such areas as reactive scatt¢friye], [15—20. The spectral method accuracy of our DAF approach
gas-surface scatterifg,6], and molecular photodissociation Nas recently been demonstrated by solving the Fokker-
[7,8]. The advantages of wave-packet methamieer conven-  Planck equation and the Schiinger equatior(21,23. To
tional time-independent methadare that they generate re- avoid the global property of the DVR and FFT representa-

sults over a continuous range of energies, and that they scal@ns: and yet retain spgctral method. accuracy, so as to make
better thanN? (whereN is the number of basis functions the calculation as efficient as possible, the DAF has been

[2]. Because of the latter advantage, wave-packet methoacsonstructed to provide, at each point, a complete basis for

have now been successfully applied to, for example[she expanding the wave packet. Upon truncation, one obtains a

. : . L localized DAF propagata(in coordinate spagewhich has a
dimensional (6D)] H+H,0 reaction[10] (and its inverse highly banded Toeplitz matrix structure, both in continuous

[11]), and the(6D) dissociative absorption of fbn Culll)  5nq discretized coordinate spaces. As a result, these DAFs
[12]. ) o can be applied using fast-Fourier-transform methods, with
An important contribution to the success of wave-packene scaling depending on the bandwidt, according to

(and relatefl methods has been the development of discretgy | W [15]. This endows the DAFs with certain advantages
grid representations of the Hamiltonian, particularly whengyer global methods for large-scale computations. This lo-
combined with fast-Fourier-transform{FFT) algorithms  calized operator is due to the combined effects of the Gauss-
[1,5,6,13. When applying the latter, an equally spaced gridian factor in the Hermite DAF and the truncation in the Her-
of points is distributed along each coordinate, enabling thenite polynomial expansion. It is interesting to note that the
propagation to switch, by FFT, between coordinate sijice truncation in other spectral methods generally induces Gibbs
which the potential is diagonaband momentum spac@én  oscillations[23], but the Hermite DAF does not have this
which the kinetic energy operator is diagondlhe propaga- problem. Owing to the truncation, DAFs are no longer norm-
tion then scales only adInN. One of the most familiar grid preserving propagators. As a consequence, one may propa-
representations to be used in this way is thgually spaced gate safely only for a finite number of time steps. Stated
discrete variable representatipb4] (DVR) which, being a differently, the DAF propagator is constructed to be used
basis set expansion method, providegabal approximation  only for a specific DAF class of wave packets composed of
to the exact wave function at each grid pofby which we  those which can, to a predetermined accuracy, be approxi-
mean that all the grid points contribute to the derivatives ofmated as an Nl +1)th-degree polynomial under the DAF
the wave function at a given pojntin a recent series of envelope. Moreover, the DAFs can always be chosen to pro-

1050-2947/98/5(5)/33098)/$15.00 57 3309 © 1998 The American Physical Society



3310 WEI, ALTHORPE, ZHANG, KOURI, AND HOFFMAN 57

vide an excellent approximation to ahy band-limited func-  existing mathematical formalism of moving least-squares
tion. Thus, in place of a norm-preserving continuous DAF,theory. Section V concludes the paper.
one has a DAF which is the identity for aM(+ 1)th-degree
polynomial. Since nd.? wave packet igverexactly a poly- Il. THE LAGRANGE-DISTRIBUTED APPROXIMATING
nomial, one has the approximate nature of the DAF propa- FUNCTIONAL
gat|or.1. One may propagate only for a finite number of time The LDAF was originally developed in close contact with
steps; the parameters of the DAF, however, can be chos% :

h that the br tion can be for as | . ired f e DAF approach to construct a computationally useful ap-
such that the propagation can beé for as 1ong as IS required 1o, o imation to the Dirags function. In this section we shall
a given system. This property can be understood better usi

. ; art from a different perspective. In their classic work, Paley
the momentum representation of the DAFs. For a given sel g Wienerf34] showed that for arh, function f which is

of ﬁ”“‘?* nonzero DAF parameters, DAFs are optimized I0W-p, o jimiteqd toy, i.e., its momentum representation is iden-
pass filters in the momentum representation. They beco cally zero outside the bangh, its valuef (x) at an arbitrary

Lﬂz?lthae"gzlszsaﬁItfézcvﬁlggr:htehgirpaacfrjrzmtaitercs|r?t[?1i cf;osern q SUEdint x can beexactlyrecovered from a set ghot necessar-
PP ction. s regard, ein uniform) discrete “sampling points’{x,},

for a finite grid system, both the DVR and FFT methods ar

also restricted to band-limited functions. kol o
The localized property of the DAF method indicates that su%xk— — <4— (1)
it can be an ideal method both for nonlinear partial differen- kez n n

tial equations and for irregular boundary problems. In suc
cases global methods become much more cumbersome
implement, so that various local methods, such as finite dif- %
ference_ anq finite element sch.emes, are commonly gsed. The f(x)= E f(x)S(X) (xeR), @)
former is widely used for nonlinear quantum dynamics. The —
latter is a basic tool for engineering problems. In the most
recent series of studies, for the examples considered, trghere
DAFs were shown to provide the most accurate and simplest
approach to a variety of nonlinear problems, including the
nonlinear Schrdinger equation, the Klein-Gordon equation,
the sine-Gordon equatioh24,25, the nonlinear Fokker-
Planck equation[26], Burgers's equationf27], including
Reynolds numbers as high as®1[®8], and the first ever
solution of the Kuramoto-Sivashinsky equation in a circular91Ven by
domain[29]. The success of the DAF method in nonlinear o «
dynamlcs has _establlshed it as an important approach for a G(x)=(x—x0)H (1_ 2
wide range of linear and nonlinear problems. k=1 Xk
One of the purposes of this paper is to introduce the re-
cently developed Lagrange DABsDAFs) [30] as a discrete  andG’ denotes the derivative @&. Equation(2) is called a
grid representation with which to represent the HamiltoniarPaley and Wiener sampling theorem in the mathematical lit-
in FFT wave-packet propagation methods. The LDAFs areerature and can be regarded as a generalization of the clas-
constructed by combining the DAF idea with the Lagrangesical Lagrange interpolation formula to the real lirie) (for
interpolation formula. In this regard, they provide a link be- functions of the exponential type. Unlike the classical
tween DAFs and DVRs. Another important property of theLagrange interpolation formula, E¢2) contains infinitely
LDAFs is that they provide accurate spatial discretizationmany terms, and we stress that it yields the exéx} for all
and derivatives for a wide range of LDAF parameters. Therealx. Thus the interesting point is that the information of a
previous Hermite DAF, on the other hand, does this only atontinuous function(containing a compact set of frequen-
its well-tempered limit, which is governed by a correlation cieg on the real line R) can be entirely embedded in an
between the DAF parameters and the grid spacing. infinite, but discrete irregularly placed set of sampling points
This paper is organized as follows. In Sec. Il the LDAF (grid pointg. Condition (1) is the best one can hay&4].
formalism is reintroduced from a different standpoint from There will be an aliasing error if the grid mesh is larger than
that of the original wor{30,31. In particular, we analyze is allowed by condition(1) or if the function f(x) is not
the advantages and disadvantages of a mathematical theorérandlimited toz. The major disadvantage of E@) is that it
from a physical point of view, and then introduce our LDAF converges slowly. In practice, neither computational nor ex-
in the framework of this mathematical formalism. In Sec. Il perimental data can ever be obtained at an infinite set of
we describe an application of the LDAF to a wave-packetdiscrete sampling points. From a mathematical point of view,
propagation method, theime-independent wave-packet a bandlimited(i.e., compact support in Fourier spadanc-
(TIW) reactant-product decouplinRPD) method, which tion cannot have compact support in the coordinate represen-
has recently been developglb—18,33 for calculating state- tation unless it is identically zero. From a physical point of
to-state reaction probabilities. We apply the method to theview, physical measurements cannot be conducted for an in-
2D (collineap and 3D =0) H+H, reactions. In Sec. IV finite duration, therefore physically realizable states are the
we give a brief discussion of the LDAF approach, including Schwartz space functior{82] (i.e., rapidly decaying func-
connections between the general DAF theory, as well as thions), which can be treated as effectively bandlimited in

chy the following Lagrange-type interpolating series:

B G(x) 3
S0 G (x—x ©

is the Lagrange-type sampling function. The symBotie-
notes the set of all integers. HeB{x) is an entire function

X
I
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both the momentum and coordinate representations. Thigvhich has an explicit Toeplitz structure. This expression will
suggests that one can truncate Et).and still obtain reason- be used in Sec. Il in the reactive scattering application.
able results. A simple way of achieving this is to introduce a It is well known that the Lagrange interpolation reduces
weight functionw,(x) into the right-hand side of Eq2).  to a sinc kernel on a uniform infinite grick(=kA =—x_,).

This heuristic approach leads to thpproximateequation, This is because Ed4) becomes
oo oo X
0~ F(Xi) SOOW(X). 5 Go=x [l |1+ (12
= k= k#0 kA
A commonly used weight function on the real liReis the o X2
Gaussian =x[] |1- 5 (13
k=1 kA
W (x) =&~ X072 (0< <o), 6
k(X) (0<o<x) (6) sin(m/A)x
Note that the approximate equati®) becomesxactin the =4 T ' (14

limit that o, approaches infinity. Moreover, as, tends to
zero S (X)wy(x) behaves like a “semicontinuous” Dirad  Taking account o’ (x,) =(— 1), then Eq.(3) gives rise to

function, .
(—1)% sin(m/A)x

. 1 G(x) C2ae? SO0 = TR (x—ka) (19
fim G (x)(x—xp) © e
neo N2mo G K _sin(a/ A) (x—x) 6
G(x) (A (X=X )
S(X—Xy). (7)

T e i Vw—w )
G’ (i) (X =) This is the well-known sinc kernel. It follows that an alter-

We call this type of distribution a “Kroneckes function”  native expression of LDAF kernel in E¢5) on uniform grid

[31]. This is effectively as function because IS
, G(x) Six—xl oy = SMTAIXTX) (121202
lim =1, 8 (x=xlo)= 0 ¢ . (D
xex G (X (X—Xy) ® (7l A) (x=x)

- . : . - In this form, our LDAF sampling, Eq(5), can be easily
M

For aﬂmte set of samplmg pom{:_xk}k:l Wh'Ch are distrib- compared with Paley-Wiener sampling, Eg), with S,(x)
uted in the nearest-ne|g_hb(?r region of poip{ we have the given by Eq.(16). We choose three very different functions,
following LDAF expression: f1(x)=e ¥°(cos &+sinx), f,(x)=cos X+sinx, and

. f4(x) = 1% cos 5+ sinx), for this comparison. A vari-
e~ (X=X 20) (99 ety of sampling bandwidths\®+1 is used with the grid
spacing being fixed a& = 7/23. L, sampling errors are cal-
culated for 40 off-grid values in the interval §0,7]. We
chose the LDAF parameter/A=3.3. As listed in Table |,
for the nont, function f,(x), the Paley-Wiener sampling
w becomes worse when the bandwidth increases. It converges
f(x)~ 2 S (X=X i) F (X)) - (10)  very slowly for the second functiofy(x). Only in the case
k=-w of the Schwartz class functiofy(x) does the Paley-Wiener
i ) , . sampling reach machine accuracy when the sampling band-
In practice, due to the rapl_d falloff of the Gau33|a_n weight, idth is 1025 grid points. In contrast, the LDAF sampling
only 2W grid pointsx,, which are the “nearest-neighbor”  yeiers machine accuradgr all casesat a bandwidth of 65
grld_pom_ts tox, need be_mcluded in the_sum: F>onequa_1l to grid points. Other tests show that the expressibt) pro-
a grid pointx, , we need include only-grid points on either  y;iqes the same level of accuracy and rate of convergence for
side ofx, in the sum in Eq(10). Thus, owing to the decay of he ahove test problems as the expresgidh. However, in
the Gaussian, the LDAF matrix is banded and the Gaussiaghe case of even grid spacing, the sinc form of the LDAF is
decay is typically such that the bandwidth can be taken to bgctyally simpler to use. In the case of nonuniform grids, or
less than or equal t. The total number of sampling agaptive boundary problems, the more general expression,
points,N, is generally much larger thav. In many practi-  gq_ (9), should be used.
cal applications, a uniform grid is very convenient. Corre-  The performances of the LDAF and Paley-Wiener sam-
spondingly, a useful LDAF expression for a uniform grid is pjings can be understood from their Fourier space behavior.

X=X

M
Oy (X—X =
m( ko) il;[k X=X,

An L,, bandlimited function can be approximated by the
LDAFs through the expression

given by In Fourier space, the Paley-Wiener sampling kernel is an
2 i . ideal low-pass filter, which is unsmoothed, compactly sup-
su(x—xd o) =11 (X_)_(k+'A X_le_'A) o (x-x0%2s2  ported function without any differentiability. By contrast, the
M k =1 iA —iA ' LDAF is a smoothed, effectively compactly supported low-

(11 pass filter with arbitrary order differentiability. As a conse-



3312 WEI, ALTHORPE, ZHANG, KOURI, AND HOFFMAN 57

TABLE I. L., errors of Paley-Wiener and LDAF samplings. Numbers in brackets denote powers of 10.

e *5(cos 5+ sinx) cos X-+sinx e ¥ cos K+ sinX)

W Paley-Wiener LDAF Paley-Wiener LDAF Paley-Wiener LDAF
32 1.53-3] 8.89 —16] 9.09 - 3] 1.74 —15] 5.04 - 3] 1.33 -15]
64 6.31—-3] 8.89 — 16] 3.00 —-3] 1.74 —15] 5.31—-4] 1.33 -15]

128 8.02-2] 8.89 —16] 2.37-3] 1.74 —15] 1.09 —-4] 1.33 -15]

256 8.27—-1] 8.89 — 16] 5.7 4] 1.74 —15] 3.44 —8] 1.33 -15]

512 3.93+3] 8.89 — 16] 4.74—4] 1.79-15  2.8§—-15  1.33-15]
1024 3.65+9] 8.89 — 16] 3.06 — 4] 1.79-15  2.8§-15  1.33-15]

guence of their smoothness, characterized by infinite differ- A. The TIW reactant-product decoupling equations
entiability, the LDAFs are not only applicable to a greater the RpPD equations are a rigorous formulation of

class of functions, but they also efficiently smooth out Gibbsy antum-mechanical reactive scattering recently proposed by
oscillations. Some other aspects of the sinc form of thqgeng and ZhanfB3]. The (time-dependentreactive scatter-
LDAF, Eq. (17), will be given in Ref.[35]. A unified de- ing wave functiony(t) is partitioned as
scription of sampling theorems and DAFs will be presented
elsewhere.

For solving partial differential equatiof®DE9, the most XD =x (D) + 2 xp(b), (20
important element is an accurate representation of differen- P
tiation operators. The success of DAFs for linear and nonlin- .
ear PDEs is due to their ability to represent derivatiles  Wherex:(t) andy,(t) satisfy
cally with spectral method accuracy. Tlygh derivative of

the LDAF is analytically expressed as i X(;t( ) _ er(t)—ig Vorxr(1), (21)
q M (t)
q! X—X; _
S (x—xi o) =2, (H ) w0 (x). axy(t
M KT & t(g—0! | ik X=X k 19 i% X(;’t( )=HXp(t)+inrXr(t)- (22

The advantage of this formulation is that the absorbing po-
tentials —iV,, ensure that each of,(t) and y,(t) is con-
fined to just one arrangement of the reactigp(t) is con-
fined to the reactar(or r) arrangement because eaehV
blocks off thepth product arrangement;(t) is confined to
the pth product arrangementfor a given p) because
—iVpxp(t) is a(time-dependentsource term which propa-
ates down the product channel towards the asymptote.
Peng and Zhang33] have developed a propagator for

We therefore approximate the action of thth derivative
operator as

94
o [0=FP00~2 aP(x=xJof(x0). (19

This local approximation of derivatives serves as a basis fo?

solvi_ng partial differential equations of both the linear andcalculating)(,(t) and y,(t) which is based on the modified
norllzlmea}r tylpg. he di . tar has b icted Cayley propagatof36]. In later work[16—18, some of the

h or swgp icity, t eI 'SCU‘Q’_S'ﬁn so far ﬁs een re'strlct?c L%uthors of the present paper developed a propagator based on
the one-dimensional case; however, the extension of thg,, Chebyshev propagator, by half Fourier transforming the
LDAFs to multidimensions is immediate and straightfor- original time-dependent RPD equatiof&gs. (20)—(22)] to
ward. In this work, we simply use the product of one- their time-independent wave-pacK&7] form. In the latter,

dimensional LDAFs in multidimensional probIe_ms. In the the TIW wave function for reactive scatterigg (E) is par-
remainder of this paper we demonstrate the utility, and teShtioned as

the accuracy, of the LDAF(11) for two- and three-

dimensional reactive scattering. The LDAF parameters are

chosen agr=23.173,M =80, andW= 32 throughout. ENE)=& (E)+ >, §;(E), (23)
p

Ill. EXAMPLE CALCULATION wheregr*(E) and §;(E) satisfy

We now consider an example application of the LDAFs to
a recently developed wave-packet propagation method, the N i N
time-independent wave-packet reactant-product decoupling & (B)=5_ Gr(B)x(0), (24)
method [16—18,33. This is a method for calculating the
state-to-state reaction probabilities, which we shall here ap- . . .
ply to the 2D(collineay and 3D g=0) H+H, reactions. £, (E)=—G (E)I'p(E)¢, (E) for eachp. (29
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Instead of the absorbing potentialsivp, of Egs.(20)—(22), TABLE Il. State-to-state reaction probabilities calculated for the
these TIW equations contain a set of energy-dependent aBD (collinea) H+Hj reaction, using the LDAF and Hermite DAF
sorbing potential§’,,(E) (which are explained in Ref17]). (HDAF) discrete grid re_presentations. Also shown are the SKV
G*(E) andG; (E) are the Green functions corresponding toesults of Colbert and Miller taken from Re#0].

H and toH+X ', (E), respectively.

In our method 17] of solving Eqs.(23)—(25), we propa- Transiti y LDAFEnergy HDAE SKV
gate the solutiong; (E) (A=r,p) by expanding them in 'ansition (eV)
the form 0—0 05 8.265K10°2 8.2659<10 2 8.3x10 2
N 0.8 0.941 66 0.941 85 0.938
: 1.1 0.30078 0.300 76 0.296
+ = —ing
& (B) 2mAH sin ¢ nzo € M, (26) 14 5.8047%102 5.8053x10 2 5.96x10 2
0—1 0.8 1.078X10°* 1.0672x10°* 3.74x10°°
where cosp=(E—H)/AH, andH andAH are scaling param- 1.1 0.38080 0.380 78 0.380
1.4 0.23265 0.232 64 0.224

eters. The ,, are a set ofenergy-independenbasis
functions which are generated by repeatedly applying the

scaled HamiltonianH nom=(H—H)/AH according 0 a he action of the LDAF kinetic energy operators efficiently
Chebyshev-like propagation scherf@etails of which are 1y means of the(standard FFT convolution algorithm
given in Ref.[17]). The propagation scheme Fakes full ad- [13,39. An important step in solving the TIW RPD equa-
vantage of the form of the TIW-RPD equations, so thatijons js the fitting of a set ofi-dependent source terrfie-
when generatingy,,, it is only necessary to evaluate the .aiaq in the region ofl',(E)] from r-arrangement to

action ofH within the A arrangement. p-arrangement coordinates. In performing this fitting, we
employed the LDAF approximation to the Diratfunction
B. Application to the 2D and 3D H+H, reaction [given by Eq.(19) with g=0] in the same way that we used

the Hermite DAF in Refs[17,18.

In all other respects, the calculations were identical to
those of Refs[17,1§], except for two further details. In the
2D calculation we did not include an exponential factor in

We tested the LDAF representation by solving the TIW-
RPD equationgas summarized aboyéor the 2D(collinear
and 3D J=0) H+H, reactions, neglecting breakup, on the
Liu, Siegbahn, Truhlar, and Horowi{88] potential energy . .
surface. Many details of the calculations are the same as i e absorbing potentialpsee Eqs.(26) and (27) of Ref.

our previous work of Refs[17] (for the 2D reaction and 711 In both calculations we used slightly larger values of
[18] (for the 3D reactioh so we shall concentrate here on the scaling parametetsH andH [see Eq.(26) above, set-
what is particular to the LDAF calculations. ting both parameters to 0.7 a.u. in the 2D calculation, and 1.4

In both the 2D and 3D calculations we represeriteih a.u. in the 3D calculation. The latter change was necessary
. . : because the spectrum of the LDAF Hamiltonian covers a
r-arrangement Jacobi coordinafegen propagating,’ (E)] ; :
or p-arrangement Jacobi coordinatéahen propélgating slightly broader energy range than that of the Hermite DAF
£ (E)]. One may define the and p arrangements of the Hamiltonian for the present choice of DAF parameters.
b .

reaction by specifying which H atom correlates with the iso- The results of the 2D LDAF calculation are shown in
Y SP N9 SN Table Il, where they are compared with the results of a Her-
lated H, molecule in the asymptotic limit. The arrangement

Jacobi coordinates are then-the distance between the pair mite DAF calculation(which was repeated using the same
of H atoms,R—the distance between the third H atom andabsorblng potentials and scaling parameters as in the LDAF

the center of mass of the pair, aftbr the 3D reaction calculation$, and with th_eS-matrix Kohn variationalSKV)
6—the angle between andR Fo'r the 2D reaction there is results of Colbert and Millef40]. All three sets of results are

. : . clearly in very good overall agreeme(to better than a few
Just onep arrangement. For the 3'.3 reaction there are pwo ercent. The LDAF and Hermite DAF results agree to better
arrangem(ints, but since they are identical we need propag an three significant figurdsvith the exception of the very
only oneé, (E). , small numbers The results of the 3D LDAF calculation are
The grid representations were constructed as follows. I_pown in Figs. 1 and 2, where, again, there is evidently very

both arrangements of the 2D reaction, we represen@id  ¢|ose agreement between the results of the LDAF and of the
R in the LDAF representatiofithat is, we represented the Heormite DAF[18] calculations.

second derivative matrix by Eq19), with q=2]. In ther
arrangement of the 3D reaction, we also representad R
in the LDAF representation. In the arrangementof the 3D
reaction we representeR in the LDAF representation arrd From previous work30], we know that the Hermite DAF
in the DVR obtained from the fvibrational wave functions yields a very accurate and reliable representation of the
(since the latter are a very good basis once the H atom is fadamiltonian when used in FFT wave-packet propagation
enough away from the Hmoleculg. In both arrangements methods. Hence the very close agreement between the LDAF
of the 3D calculation we representefl in the Gauss- and Hermite DAF result&s reported in Table Il and in Figs.
Legendre DVR. 1 and 2 demonstrates that the LDAF propagator yields a
Each LDAF representation was constructed using thesimilarly accurate and reliable representation of the Hamil-
same evenly spaced grid as that used for the correspondirignian. Like the Hermite DAF, the LDAF has a banded
Hermite DAF representation in Refil7,18. We evaluated Toeplitz structure, enabling the kinetic energy matrix to be

IV. DISCUSSION
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o ; ; ' ' ; ; ' ' by application of the DAF variational principle. Therefore an
accurate global approximation is constructed through the
variation-generated local basis on each grid point. We note
that this general DAF theory is intimately connected to the
mathematical structure known as moving least-squares
theory or moving least-squares reproducing kerpéls-4§.
However, it is known that satisfying the moving least-
squares reproducing kernel requirements is not sufficient for
constructing an accurate and efficient computational scheme.
In fact, to our knowledge, none of the existing moving least-
squares methods has been used previously to generate either
our Hermite or Lagrange DAFs. The moving least-squares
reproducing kernel methods, however, have been widely
Total Energy (eV) used for various computational problems, such as surface
generation[42,47,48 and solving PDE$46]. Most of this
—0,j) calculated for the 3DJ=0) H-+H, reaction forj =0 (solid work focuses on constructing interpolating kernels since in-
line), j=1 (dashed ling j=2 (dotted ling, and j=3 (chained f[erpolatln_g formulas have peen regarded as better than non-
line). The curves are the results of solving the TIW RPD equationémerpolatmg ones. For solving PDES' where only t-he on-grid
using the LDAF representation as described in Sec. Ill. The pointy@lues of a function are ever required, one does find that the
(taken from Ref.[18]) are the results of solving the TIW RPD interpolating DAFs yield more accurate results over a wide
equations using the Hermite DAF representation. range of parameter space. However, in other applications,
such as potential surface fitting and noise filtering, noninter-

applied very efficiently by means of a FFT convolution al- polating kernels can have significant advantages over the in-

; . terpolating ones, and as shown by our earlier work, the non-
gonthm. The advan_tage of the LDAF over the Herml_te DAF.interpoIating Hermite DAFscan yield the same level of
is that the former yields results which are relatively insensi-

; ) . . “accuracy as the LDAFs, so long as aeccurate well-
g\t/eerstfgtl?e choice of the DAF width and truncation param tempered DAF is employed.

Unlike the original introduction of the LDAF, the intro- Colbert and Miller[40] have shown that the sinc kernel,

duction in this paper is based on the mathematical formalismEq' (15), Is the sine-DVR on the infinite grid. Therefore on a

of Paley-Wiener sampling theofi4]. As a consequence, uniform infinite grid, the LDAF can be regarded as a sine-

the LDAFs become exact wharn, approaches infinity. The DVR with an extra weight, which is a "windowed sine-
analog of theo,— o andM— for the Hermite DAF is to DVR.” The concept of window functions is widely used in

X i . science and engineering. For example, the windowed Fourier
takeMt—>;o Q’V'th ‘Tt.f'xet}d andA:(_). Ph;;s[f:a_l ?jrgun;entst_ are transform is an important tool in signal and image process-
\?vr?i‘;“n ed 10 motivate our choice of “window tunction ing. Since the windowed Fourier transform is one of the

KA . important ideas behind wavelet transforms, it is likely that
Ilrt] rdectent work we have lalslo Sho"ﬁ;kgat thﬁ. LE AFIs LDAFs are closely related to wavelet thedparticularly the
related to a more general class o s, Which are C_Onfheory of framey which is one of the most rapidly develop-

structed by a pointwise least-squares variational principl

: . €fng subjects in applied mathematics of recent years, with
[15(?’)]' In suqh DAF.S’. everx point has the same bas_ls. set many applications. This connection is under investigation.
relative to a fixed origirbut not relative to the local origin.

h | DAE 1l efficient and tl t Moreover, from a mathematical standpoint, it is possible to
ese genera S are especially emncient and poWertul 10f gy ct generalized Lagrange sampling theorems based on

systems th_at h_ave L(Jjnlfo_rm %TFS Forbnonungorlm gnd_ S>|'S'the nodes of various special functions, such as Legendre and
tems, a pointwise adaptive can be used. In particularg e oqe| functions, and various polynomials, such as Laguerre

everyx point has its own basis set with coefficients Obtainedpolynomials. Correspondingly, it might be possible to con-
struct LDAFs based on those node points. We shall explore

Probability

FIG. 1. State-to-state reaction probabilitiRér,=0,j,=0— v

0.0 ' ' ' ; ' 7 this possibility in future work. Finally, DAFs can be con-
structed for arbitrary sampling schen{s® long as they ac-
ooal *+ /] curately approximate the sum in E¢p)], so they are not

restricted to Gaussian-type quadratures. Using the pointwise
variational principle, a DAF representation of a function can
be obtained fomany sampling scheme.

0.015

Probability

4
<

V. CONCLUSIONS

0.006 [

In this paper the connection is made between the

P ‘ e Lagrange-distributed approximating-function@DAF) and
, sy ‘ e the Paley-Wiener sampling theorem. LDAF sampling is
o8 o9 ! TM:;MSV) 12 18 b compared with the Paley-Wiener sampling for three different
functions. Our results indicate that LDAF sampling performs
FIG. 2. Same as Fig. 1 fdR(v,=0, jo=0—v=1,j). much better than Paley-Wiener sampling or sine DVR sam-
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pling. The LDAF requires a much smaller sampling band-ment with the results of previous calculations, in which the
width to deliver machine accuracy when the impulse func-Hamiltonian was represented by the analogous Hermite DAF
tion is rapidly decaying. The convergence of the Paleygrid representation. Unlike the latter results, however, the
Wiener sampling becomes extremely slow when the impulsgesults of the LDAF calculation are less sensitive to the
function is trigonometriqwhich is almostL,). The Paley- width and truncation parameters of the DAFs, so that the
Wiener sampling does not work for an exponentially grow-| DAFs are easier to use than the Hermite DAFs for solving
ing function. However, our LDAF still prOVideS machine ac- partia| differential equations using uniform grids_
curacy in each case.
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