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Interpolating distributed approximating functionals
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In this paper, we present a class of distributed approximating functionals~DAF’s! for solving various
problems in the sciences and engineering. Previous DAF’s were specifically constructed to avoid interpolation
in order to achieve the ‘‘well-tempered’’ limit, in which the same order error is made both on and off the grid
points. These DAF’s are constructed by combining the DAF concept with various interpolation schemes. The
approach then becomes the same as the ‘‘moving least squares’’ method, but the specific ‘‘interpolating
DAF’s’’ obtained are new, to our knowledge. These interpolating DAF’s are illustrated using Lagrange inter-
polation ~the ‘‘LDAF’’ ! and a Gaussian weight function. Four numerical tests are used to illustrate the
LDAF’s: differentiation on and off a grid, fitting a function off a grid, time-dependent quantum dynamical
evolution, and solving nonlinear Burgers’ equation.@S1063-651X~98!10204-0#

PACS number~s!: 02.70.2c
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I. INTRODUCTION

Recently we have conducted a series of investigations
ploring the use of distributed approximation functiona
~DAF’s! for solving partial differential equations~PDE’s!. In
the course of these studies we developed a class of DA
which are of comparable effectiveness to other DAF’s
solving PDE’s, but that have interesting features. Th
DAF’s also establish a connection with the ‘‘moving lea
squares’’ approach to interpolation@1–3#. The purpose of
this paper is to discuss the theoretical underpinnings of th
DAF’s, and to demonstrate their efficacy.

The present work is motivated by our investigations
solution methods for partial differential equations describ
the time behavior of various systems. The study of su
equations~which arise in almost all areas of science a
engineering! is one of the most important research fields
applied mathematics. There are two major classes of solu
methods, namely, global approaches~such as spectral an
pseudospectral methods! and local methods~finite elements,
finite volumes, and finite differences!. For linear equations
with relatively simple boundary conditions, such as t
Schrödinger equation in typical applications to quantum d
namics, various spectral and pseudospectral methods@4–19#
are highly accurate, and can be implemented with a r
tively small number of basis functions, thus achieving co
putational efficiency. Most spectral and pseudospectral m
ods use standard basis functions constructed from w
known polynomials ~e.g., Jacobi, Laguerre, Legendr
Hermite, Chebyshev, etc.!. The expansion coefficients ar
usually determined by thet method, the Galerkin method, o
by a collocation method. Shizgal and co-worker’s meth
@8,9# utilizes nonstandard weight functions that are es
cially adapted to the problem under study, and thus m
reduce the number of grid points needed for a particular
plication. This method becomes equivalent to the discr
variable representation~DVR! method@7,10–12#, which is
widely used in quantum-chemical dynamics, if one uses c
571063-651X/98/57~5!/6152~9!/$15.00
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sical weight functions. For nonlinear systems the superp
tion principle is no longer valid, and complicated bounda
conditions and geometries can significantly affect the rela
usefulness of spectral methods. Local methods, such as fi
element methods@20,21,22,61# and finite difference method
@23–27#, are much easier to employ in these instances,
are the ones most commonly used. The fundamental dif
ence between global methods and local methods is that
former approximate the values of a function and its deri
tives at a given grid point using all grid values of the fun
tion on the entire domain, whereas the latter do this us
only the values of the function on a compact set of g
points containing the given grid point as an interior point.
general, if applicable, global, spectral, or pseudospec
methods are more accurate than local methods. It is desir
to have a method that possesses spectral method acc
and local method flexibility for both linear and nonline
systems. Distributed approximating functional methods
of this type@28–42#.

A variety of realizations of DAF’s have been propose
depending on the nature of the application of interest@30–
34#. In particular, these DAF’s have been successfully
plied to the solution of a variety of partial differential equ
tions, including those arising in quantum dynamics@35–37#,
linear and nonlinear Fokker-Planck equations@38–40#, and
the nonlinear Burgers’ equation with moderate and h
Reynolds numbers@41,42#. The ability of the DAF’s to pro-
vide an analytical representation of a function and its deri
tives in terms of a discrete set of values of the function
central to its successful use in various computational ap
cations.

In this work we introduce a new class of DAF’s which w
refer to asinterpolatingDAF’s ~and, by contrast, we refer to
earlier DAF’s asnoninterpolating!. One such DAF~the so
called Lagrange or LDAF! has already been applied succes
fully to the solution of the linear bound-state Schro¨dinger
equation and a linear Fokker-Planck equation. In this pa
6152 © 1998 The American Physical Society
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57 6153INTERPOLATING DISTRIBUTED APPROXIMATING . . .
we discuss how our DAF’s can be obtained from the pre
ous DAF formalism@34#.

Interpolating DAF’s are constructed by combining inte
polation formulas with decreasing weight functions. Th
systematically generate distributed localized basis functi
that are easily applied to nonlinear PDE’s~as are finite ele-
ment and finite difference methods!; but they are extremely
accurate for time-dependent quantum dynamical proble
for fitting functions off the input grid, and for approximatin
derivatives of functions.

This paper is organized as follows: The formalism of t
interpolating DAF’s is introduced in Sec. II. The numeric
application of the particular LDAF to fitting functions an
their derivatives is presented in Sec. III. Section IV illu
trates the time-dependent quantum dynamical applicat
The utility and accuracy of our LDAF are further demo
strated using the nonlinear Burgers’ equation with a mod
ate Reynolds number. Section V contains our conclusion

II. FORMALISM

A. General variational approach and well-tempered DAF’s

The general features of the theory of DAF’s have be
extensively discussed in a number of articles@28–42#. Here
we outline only the basic ideas. The ultimate goal is to c
struct an approximate analytic representation of a func
f (xI ), and its derivatives from the values of the function on
set of grid points in thexI domain. In the DAF method one
first writes an approximation to the function at the pointxI 8,

f app~xI 8uxI !5(
i

ai~xI !f i~xI 82xI !, ~1!

using a basis set of functions centered onxI , and then uses
the approximation only forxI 85xI ~i.e., replacesxI 8 by xI ! to
obtain

f DAF~xI !5 f app~xI uxI !5(
i

ai~xI !f i~0!. ~2!

In other words, each pointxI has its own truncated basis s
with expansion coefficients, that in the general case
themselves functions ofxI . To obtain the DAF-approximated
function atxI , one evaluates the expansion for the pointxI at
the origin. Although we have not explicitly so indicated, t
basis functions can also depend implicitly on the pointxI .
This is a point crucial for our present considerations, and
which we will discuss in some detail later. Equation~2!
should be contrasted with a standard basis set expansio

f ~xI !5(
i

aif i~xI !. ~3!

This simple approach, as represented by Eq.~2!, speaks more
to a very general conceptual framework rather than an
erational procedure. It is so general that virtuallyall fitting
techniques, viewed in the right way, can be considered
special cases. To be useful one must specify exactly how
local approximation is to be made.

In nearly all of our work to date, we have used a poi
wise, weighted least-squares variational principle to de
i-
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mine the coefficients,ai(xI ) in Eq. ~2!, for all pointsxI ~al-
though by no means is one limited to such an approach
preliminary calculations suggest some interesting modifi
tions @43#!. The resulting DAF coefficientsai(xI ) are then
linear functionals of the set of all input data points. T
pointwise variational function is of the form@34#

l~xI !5(
i

wi~xI !u f ~xI i !2 f ~xI i uxI !u2, ~4!

where the sum is over all grid points andwi(xI ) is the ~non-
negative! weight of the i th grid point for origin xI . The
weight which has been investigated most extensively is

wi~xI !5expF2~xI i2xI !2

2s2 G . ~5!

Substitution of Eq.~1! into Eq. ~4!, followed by requiring
that l(xI ) be minimized with respect to the expansion co
ficients, leads to linear algebraic equations for the expans
coefficientsai(xI ). The general form of the solution, at eac
xI , is

ai~xI !5(
k,n

wk~xI !fn* ~xI k2xI !@C21~xI !# i ,nf ~xI k!, ~6!

where the ‘‘overlap matrix’’C is defined by

@C~xI !# j ,n5(
k

wk~xI !f j* ~xI k2xI !fn~xI k2xI !. ~7!

If f j* (xI k2xI ) also happens to be the biorthogonal comp
ment@under summation over the grid, subject to the weig
wk(xI )# of f j , then

@C~xI !# j ,n5d jn , ~8!

and the matrix element of the inverse,@C21(xI )# in , is trivi-
ally alsod in .

The variational functionl(xI ) of Eq. ~4! therefore leads to
the DAF approximation@34#

f DAF~xI !5(
i

I ~xI ,xI i ! f ~xI i !, ~9!

where

I 5~xI ,xI i !5(
j

wi~xI !f j~0!j j* ~xI i2xI !, ~10!

and

j j* 5(
n

@C21# infn* ~11!

is the biorthogonal complement off j under summation for
the weightwi(xI ). It should be noted that such a variation
functional is also the starting point for the moving lea
squares and reproducing kernel, methods@1–3#. As noted
previously, the approach in general leads to noninterpola
approximations to the function of interest. However, the
cus of these earlier efforts has been on interpolative versi
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In contrast, earlier DAF studies focused on taking advant
of the absence of interpolation to achieve the ‘‘we
tempered DAF’s’’.

This point can best be illustrated by an example, wh
will be important in our later discussions. Consider a on
dimensional grid, with the weight function of Eq.~5!, and the
basis functions (xi2x) j , j 50 to M . Then

I ~x,xi ![DdM~x2xi us!, ~12!

whereD is the grid spacing~assumed to be uniform! and

dM~x2xi us!5
1

A2ps
expF2~x2x8!2

2s2 G
3 (

n50

M /2 S 2
1

4D n 1

n!
H2nS x2x8

&s
D , ~13!

is the so-called Hermite DAF. The functionsH2n are not,
strictly speaking, Hermite polynomials~as the notation migh
suggest!, or for that matter polynomials at all. In fact, the
are quite complicated functions~i.e., no simple expression
for them exists!, and, although it is not so indicated, the
depend implicitly on the placement ofx between its two
neighboring grid points~i.e., the value ofx modulo the grid!.
However, asD→0, H2n becomes the 2nth Hermite polyno-
mial.

An interesting and important fact is that these functio
approach the Hermite polynomial limit very sharply, and f
values ofD that are still large enough to be extremely use
for practical fitting applications. In the regime where E
~13! can be effectively expressed in terms of Hermite po
nomials, we say that the approximation is ‘‘well tempered
~This is a fundamental feature of our earlier DAF analy
and, so far as we have been able to determine, distingui
that work from the interpolative versions of the movin
least-squares method.! The DAF approximation being wel
tempered is tantamount to being able to write

f DAF~x!5E dx8dM~x2x8us! f ~x8! ~14!

~the so-called ‘‘continuous DAF’’ case@30,31,34#!, from
which it is clear that the grid points have in a sense lost th
special identity and that the well-tempered DAF fit is
good off the grid as it is on.@Note that the well-tempered
Hermite DAF can be obtained in a heuristic way by discre
ing Eq. ~14!, although at first blush discretizing ad-function
integral—even if thed function is only approximate—migh
seem risky. Further note that in the limits→0 or M→` the
Hermite DAF goes exactly to the Dirac delta function.#

Saying that ‘‘the fit is as good off the grid as on’’ implie
that there is a unique, underlying function being appro
mated. What this means is that forany regular grid with
spacingD, there is a unique set of functional values on t
grid that would give rise to exactly the same analysis, a
therefore, from the functional values on any one grid, one
able to deduce the entire function.~This function is, of
course, the one that can be constructed from the grid dat
Fourier transform theory using continuous wave number
the range2p/D<k<p/D.!
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An important property of a well-tempered approximatio
is that it yields very accurate derivatives. In fact, it can
shown that the derivative of the DAF approximation is t
DAF approximation of the derivative for a well-tempered fi
This property of yielding highly accurate derivatives is e
tremely important for solving differential equations. Th
well-tempered ‘‘differentiating Hermite DAF’’ has the ver
simple form

dl

dxl dM~x2x8us!

5
1

A2p2l /2s l 11
expF2

~x2x8!2

2s2 G
3 (

n50

M /2 S 2
1

4D n

~21! l
1

n!
H2n1 lS x2x8

&s
D , ~15!

which is easily established from the generating function
the Hermite polynomials.

Outside the well-tempered limit~which, for example, oc-
curs for the Hermite DAF ifs is too small orM is too large
for fixed D! the fit becomes increasingly interpolative~more
nearly exact on the grid points! but inaccurate off the grid.
This leads to increasingly inaccurate derivatives.

It should be pointed out that a well-tempered DAF isnot
a projection operator on the grid~i.e., I 2ÞI !. In fact, in the
limit that the grid spacing goes to zero, the Hermite DAF
Eq. ~13! has a continuously indexed spectrum with an eig
value of unity only at a single point~all other eigenvalues are
less than unity!. Despite this the Hermite DAF in the limi
D→0 is an identity for all polynomials of degree<M11.
This might at first seem to be a contradictory result, but i
in fact possible because polynomials do not belong to
Hilbert space. Because well-tempered DAF’s are not proj
tion operators, their repeated application will degrade the
of a Hilbert space function. One might think that this wou
present difficulties in applications, but in fact the degradat
of the fit is predictable, and controllable due to its near l
earity. In addition to yielding highly accurate derivatives, t
well-tempered property makes DAF’s extremely useful
data fitting and smoothing~including eliminating experimen-
tal noise!, data padding, predicting, and similar data manip
lations that are applicable in a wide variety of fields@44–46#.

However, the general theory of DAF’s that we have o
lined allows the possibility of a kind of DAF quite differen
from well-tempered DAF’s such as our Hermite DAF e
ample. These are interpolative and hence projection op
tors. Nevertheless, they still deliver highly accurate deri
tives, and consequently can be used to solve PDE’s
effectively as well-tempered DAF’s~as we shall presently
demonstrate!. Their repeated application does not degra
functions, preserving all the information in the data s
Therefore, they cannot be used for data smoothing and
dicting. However, since they preserve all information in t
data set, they are useful for quite different types of appli
tions. In Sec. II B we develop these ‘‘interpolative DAF’s
more fully.
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57 6155INTERPOLATING DISTRIBUTED APPROXIMATING . . .
B. Basis set choice for interpolating DAF’s

The procedure outlined in Sec. II A is very general.
particular, everyx point has its own basis set for applicatio
of the DAF variational principle. For most applications
DAF’s, we have used a polynomial basis under a Gaus
weight. The only two parameters of the fit then are the wi
~variance!, s, of the Gaussian, and the degreeM of the Her-
mite polynomial, which is, of course, an integer.~Actually
there is a generalized form of the DAF that, in effect, var
the ‘‘order’’ continuously@47#.! In practice we have mos
often taken both parameters to be constant over the entx
domain. Under these circumstances one can either choos
basis set to have the same form for each point relative to
local origin @i.e., (x82x) j , j 50, to M , whereM equals the
highest degree polynomial# or the same form for each poin
relative to an absolute origin@i.e., (x) j , j 50, to M #, since
these are equivalent.~This same equivalence exists foreikx8

or any other basis set that is also a basis for the transla
group.! Once the basis set and weight function have b
chosen, then the procedure for generating the DAF appr
mation is completely prescriptive.

Let us now consider the situation where the weight
constant~which, for example, can be thought of as the lim
where the width of the Gaussian weight becomes infini!.
Although there is no difficulty in principle in constructin
the DAF, as outlined in Sec. II A, we can no longer use
polynomial basis~or any similar basis set that cannot b
normalized on the grid!. Stated equivalently, the overlap m
trix C(x) is not well defined. To carry out the procedure f
constructing the DAF, it is necessary to have a basis se
which C(x) can be computed. Any basis set$f j%, indexed
on the grid, for which

f j~xk!5d jk , ~16!

and which satisfies translational invariance

f j~x!5fk~x1xk2xj !, ~17!

satisfies the DAF procedure requirements. Conversely,
symmetric orthogonalization on the grid, any normaliza
basis is equivalent to such a basis. It is obvious that not ev
set of basis functions that satisfies Eqs.~16! and ~17! is ac-
ceptable for constructing a satisfactory approximati
Hence the case where one satisfies the above two condi
cannotbe made prescriptive with respect to off-grid pred
tions, and is fundamentally different from where the weig
is local.

Since not all basis sets that satisfy Eqs.~16! and~17! are
acceptable, it is necessary to impose an additional cond
on thef j (x) in order to generate an acceptable approxim
tion. The condition we adopt is that every grid point contri
utes equivalently to the approximation.For a uniform grid,
this means that

E dx8f j~x8!5D, ~18!

where D is the grid spacing.~For a nonuniform grid the
integral is equal to theaverageof the spacings to the left an
to the right of grid pointxj .! The resulting DAF from the
variational principle isd(x,xj )5f j (x). This quantity can be
n
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viewed as a ‘‘Kronecker delta function’’~discrete on one
index and continuous on the other, as opposed to either
Kronecker delta or the Dirac delta function!. Equations~16!
and ~18! then respectively assure the twin conditions

(
k

d~xj ,xk!51 ~19!

and

E dx8d~x8,xj !5D ~20!

for any pointxj on the grid. Through these conditions th
nature of the interpolating DAF as a Kronecker delta fun
tion ~‘‘halfway’’ between a Kronecker delta and a Dira
delta function! is made manifest.

For the case where the weight function is local and
DAF procedure is prescriptive, neither conditions~19! or
~20! is precisely obeyed, but, by appropriate choice of DA
parameters, they can be made to be satisfied to any de
accuracy~up to the well-tempered limit!. Obviously, for the
constant weight case where Eq.~16! is satisfied, the DAF
approximation is strictly an interpolation~i.e., exact on the
grid!; hence such a DAF approximation can never be w
tempered~i.e., of comparable accuracy on and off the grid!.
However, it should be emphasized that being well tempe
does not necessarily equate to being accurate.

The Gaussian Lagrange DAF~GLDAF! @48#

dM~x,xkus!5e~x2xk!2/2s2

)
j Þk

M
~x2xj !

~xk2xj !
~21!

satisfies Eq.~19!, but does not satisfy Eq.~20! exactly, but it
can be made to so to arbitrary accuracy by choosingM suf-
ficiently large for fixeds andD. Thus it generates an accep
able DAF approximation for the constant weight case. N
that Eq. ~21! is only posited, and is in no sense derive
However, its form is implied by the fact that the wel
tempered Hermite DAF for very largeM has almost evenly
spaced zeros that lie very near to the grid points~for those
zeros closest to the center!. Equation~1! provides a good
approximation long before the largeM limit is ever realized
@49,50#.

III. GAUSSIAN LAGRANGE DAF FITTING
AND DIFFERENTIATION

The quality of any computational method can be eva
ated by how well the method approximates a function off
input grid points, and the derivatives of the function both
and off the grid points. The ability of approximating a fun
tion from a discrete set of data points is important for a w
range of applications, such as potential fitting@51–54#. Ac-
curately approximating various derivatives is crucial f
solving ordinary and partial differential equations. In th
section we examine the accuracy of the Gaussian Lagra
DAF for differentiation on or off a grid and for fitting a
function off the grid.

For the application of spectral methods, like that of Sh
gal @8#, to the solution of partial differential equations,
polynomial basis set is typically chosen. The degree of
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FIG. 1. Errors of the Gaussian Lagrange DAF differentiation and fitting forf (x)5e2sin(x) cos(2x)1sin(x). Solid and dashed lines denot
theL` errors. Triangles and squares denote theL2 errors. Solid lines and triangles denote the errors in the first two derivatives evaluat
the grid. Dashed lines and squares denote the errors for fitting the function off the grid.~a! M540. ~b! M560. ~c! M580. ~d! M5100.
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polynomial is determined by the number of grid points us
in the problem. In contrast, in the DAF methods, the deg
of the polynomials is more or less independent of the num
of grid points. Therefore an appropriate polynomial deg
M must be chosen for a given problem. A sufficiently lar
M value is important for accuracy~which explains why the
Gaussian test functions used in the mathematical theor
distributions are not practical for numerical application!.
Thes value determines the range of data contributing to
prediction at any off-grid pointx. The value of the Gaussia
is sufficiently small as to be approximated by zero at abo
distance of 15s. Therefore, further increases inM will not
improve the accuracy due to the cutoff provided by t
Gaussian factor for givens and grid spacingD. In uniform
grid cases, for a sufficiently largeM value, sayM580, the
ratio of s/D is the only parameter that must be appropriat
chosen. The illustrative functionf (x) used for the presen
study is

f ~x!5e2sin~ax! cos~bx!1sin~ax!, ~22!

where we takea51 andb52, and 40 grid points (N540)
are used inside the interval of@0,p#. Both theL` and L2
errors for differentiations are calculated for four differentM
values
d
e
er
e

of

e

a

y

M540, 60, 80, 100.

As shown in Fig. 1, the present Gaussian Lagrange DAF
extremely accurate for differentiation and is not sensitive
the ratios/D over a wide range of values. WhenM ranges
from 80 to 100, there is a large interval ofs/D ratios that
delivers extremely high accuracy for the test functionf (x)
and its first and second derivatives. It is noted that the sta
ranges of the ratios for the function and its derivatives in t
test problem are also the ranges of ratios for which
Gaussian Lagrange method provides accurate solutions to
time-dependent Fokker-Planck equations and nonlinear B
gers’ equation@48#. This means that it is relatively easy t
choose the parameters of the Gaussian Lagrange DAF
dynamical calculations. More details in this regard are giv
in Sec. IV.

The ability of the Gaussian Lagrange DAF to fit a fun
tion is demonstrated by predicting values of the function
the grid. We take the same function as defined in Eq.~22! as
our test function, and still use as input values of the funct
at 40 grid points (N540) inside the interval@0,p#. We pre-
dict the function at 60 evenly spaced grid points within t
same interval~thus focussing on off-grid fitting!. Only the
L` errors are recorded for fitting off the grid~the squares in
Fig. 1.!. The Lagrange DAF is able to provide 14-significan
figure accuracy in fitting this function off the grid
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TABLE I. Errors for solving the Ornstein-Uhlenbeck Fokker-Planck equation. Numbers in bra
denote powers of 10.

Time

N550, Dt50.05 N5100,Dt50.01

@25,5# @25.5,5.5# @211.5,11.5#
L2 L` L2 L` L2 L`

0.1 1.61@202# 2.07@202# 1.50@204# 2.17@204# 6.40~20.2! 8.04@202#

0.2 1.32@203# 1.64@203# 1.79@206# 2.90@206# 4.98@203# 4.94@203#

0.3 3.14@204# 4.47@204# 2.97@207# 5.08@207# 5.99@204# 5.49@203#

0.6 1.21@205# 1.77@205# 1.43@208# 2.10@208# 9.07@206# 8.49@206#

1.0 1.17@206# 1.54@206# 1.54@209# 2.04@209# 1.48@207# 1.37@207#

2.0 5.23@208# 5.99@208# 7.52@211# 8.70@211# 4.35@210# 2.60@210#

4.0 2.71@209# 2.29@209# 3.56@212# 3.67@212# 2.83@210# 2.60@210#

6.0 8.41@210# 6.63@210# 5.75@213# 5.67@213# 2.78@210# 2.49@210#

8.0 6.18@210# 5.94@210# 2.35@213# 2.06@213# 2.75@210# 2.46@210#

10.0 4.92@210# 4.70@210# 2.96@213# 1.58@213# 2.74@210# 2.44@210#
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IV. GAUSSIAN LAGRANGE DAF SOLUTION TO
QUANTUM AND CLASSICAL DYNAMICAL PROBLEMS

Another important test for the present Gaussian Lagra
DAF is its accuracy for solving various quantum and clas
cal ~nonlinear! dynamical time evolutions. Since analytic
solutions to real physical problems are limited to a fe
simple cases, there is great interest in developing meth
for accurately and efficiently solving ordinary and partial d
ferential equations, which are important to a wide range
scientific problems.

A. Ornstein-Uhlenbeck process

A useful benchmark problem for testing numerical tim
propagation methods is the Ornstein-Uhlenbeck proc
which involves both the first and second derivatives. T
Ornstein-Uhlenbeck process is a stationary Markov proc
and its corresponding Fokker-Planck equation describin
linear drift-diffusion system is given by

] f ~x,t !

]t
5g

]@x f~x,t !#

]x
1D

]2f ~x,t !

]x2 , ~23!

whereg andD are positive constants. With an initiald func-
tion distribution localized atx0 , the solution of the Ornstein
Uhlenbeck Fokker-Planck equation is given as a Gaussi

f ~x,t !5F g

2DpA~12e22g~ t2t0!!
G

3expF2
g~x2x0e22g~ t2t0!!2

2D~12e22g~ t2t0!!
G . ~24!

The stationary Gaussian distribution results wheng(t2t0)
@1. The Ornstein-Uhlenbeck process has various phys
applications, such as to a laser field far below~or above! its
threshold@55#, to a linear overdamped oscillator in the pre
ence of colored Gaussian noise@56#, and to the velocity re-
laxation of a Rayleigh gas@57#. The Ornstein-Uhlenbeck
Fokker-Planck equation is also computationally importa
and has been used for testing various new numerical sche
@9,58#. In the present computations,g and D are chosen as
e
i-

ds

f

ss
e
s,
a

al

-

t,
es

0.25 and 0.125, respectively. Two sets of grid points~N
550 and 100! are used with corresponding intervals taken
@25,5# and @25.5,5.5#, respectively, and the initiald func-
tions are located at20.6 and20.55, respectively. The time
increments used forN550 and 100 are 0.05 and 0.01, r
spectively. We have used a fourth order expansion (R54) of
a path integral formulation of the Fokker-Planck equatio
We refer the reader to Refs.@39–41# for the details of the
method. It is found that, for each fixedM value, a wide range
of ratios s/D yield accurate results for the present tim
dependent problem. This is illustrated in Fig. 1~2.4,s/D
,3.1 for M580!. The L2 and L` errors, using the ratio
s/D52.88 andM580 for a range of propagation times a
listed in Table I. It is evident that using a relatively sma
number of grid points and reasonably large time increme
the Gaussian Lagrange DAF approach is able to provide
curacy close to the computer roundoff limit for solving
quantum dynamical equation. A basic tendency of the ac
racy can be summarized as follows: the more grid points
the later the time, the more accurate the solution is. It
noted that the time-dependent Gaussian Lagrange DAF
proach easily provides sufficient accuracy for most pract
purposes even if one employs a small number of grid po
with very large time step (Dt'0.05). We expect that an
increase in accuracy for the earlier time solutions can
further achieved if the initiald functions are replaced by
numerically smoother functions.

B. Burgers’ equation

Burgers’ equation@59#, in one space dimension, given b

]u

]t
1u

]u

]x
5

1

Re

]2u

]x2 , ~25!

whereu(x,t) is a velocitylike quantity. There is thus an ana
ogy between Burgers’ equation and the Navier-Stokes eq
tion in the roles played by the nonlinear advection and
viscous diffusion terms, and for this reason the analyti
solvability of the former makes it an important test proble
numerical methods in fluid dynamics. One of the ma
sources of difficulty for solving both Burgers’ equation an
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Navier-Stokes equation is the occurrence of inviscid bou
ary layers produced by the steepening effect of the nonlin
advection term. It is customary to test new methods in t
field by applying them to Burgers’ equation.

We consider Eq.~25! with the following initial-boundary
conditions:

u~x,0!5sin~px!,
~26!

u~0,t !5u~1,t !50.

The exact solution@60# for this problem is available as a
infinite series for the parameter range Re<100. For the pa-
rameter Re5100, the present GLDAF calculations use thr
sets of grid points~25, 35, and 45 uniformly spaced poin
for interval @0,1#!, with a time increment ofDt50.01 and a
second order Taylor expansion in time. Both the numer
solution and the exact solution are plotted in Fig. 2. There
no detectable difference between the two solutions. At la
times, the solution develops a sharp change at the r
boundary which can induce numerical instabilities~Gibbs
oscillations!. The maximum absolute errors (L`) for all sets
of grid points at four different times are listed in Table II.
is interesting to compare the present results with the ea
accurate numerical results recently obtained using the ge
alized boundary element method by Kakuda and Tos
@61#. These authors used 100 elements, up to six iterati
and the same time increment as ours (Dt50.01). While the
errors in both methods are very small, the present res

FIG. 2. The exact and numerical solutions of the Burgers’ eq
tion (Re5100). Solid line: exact. Triangle: present~45 grid points!.
Square: Kakuda and Tosaka~100 elements and six iterations!.

TABLE II. L` errors of the numerical solutions for Burger
equation. The numbers in brackets denote powers of 10.

t KT Presenta Presentb Presentc

0.4 2.6@22# 1.6@22# 3.6@23# 1.1@23#

0.8 2.9@22# 2.6@22# 6.6@23# 1.4@23#

1.2 1.8@22# 8.0@23# 1.2@23# 1.9@24#

3.0 6.9@23# 4.5@25# 2.3@25# 2.2@25#

aN525.
bN535.
cN545.
-
ar
is

l
is
r

ht

er
er-
a
s,

lts

range from being ten to a few hundred times more accu
than those of Kakuda and Tosaka@61# ~KT!, while obtained
using fewer grid points.

V. CONCLUSION

A class of DAF’s, called interpolating DAF’s, are pro
posed for a wide range of numerical applications. The
proach is illustrated using the Gaussian Lagrange DA
These DAF’s are interpolative solutions of the variation
equations generated by a pointwise least squares proce
and they can be used for approximating any function,
distribution and its derivatives having polynomial growt
The Lagrange DAF’s, like many other DAF’s, can be view
as a natural extension to familiar Diracd sequences and/o
Gaussian test functions, and therefore can be regarde
generalizedd sequences. However, both the usuald se-
quences and the Gaussian test functions do not have m
numerical utility, whereas the DAF’s are powerful numeric
computational tools.

The Lagrange DAF’s are constructed by combining t
DAF concept with the Lagrange interpolation idea. Thr
types of numerical problems, including differentiation o
and off a grid, fitting a function off a grid, time-depende
quantum dynamical evolution, and a standard test prob
from fluid dynamics, are used to demonstrate the usefuln
test the accuracy, and explore the limitations of the Gaus
Langrange DAF, a particular realization of the Lagran
DAF’s. The parameters in the Gaussian Lagrange DAF
chosen to yield exact results on a grid~the so-called interpo-
lation property!. We obtainL` errors of 10214 for the func-
tion off the grid, and 10213 and 10212, or better, for first and
second order derivatives on the grid respectively for a w
range of parameters. This is illustrated by using an anal
cally known function with 40 input grid points in the interva
of @0,p#. Because the LDAF’s easily generalize to high
dimensions, this is potentially of use in fitting potential e
ergyab initio data to use in molecular dynamics calculation
This test also has a very general significance since, as
discuss below, both the accuracy and the validity range
the parameters are confirmed in an entirely different appl
tions, namely, solving time-dependent partial different
equations of both linear and nonlinear types. The powe
the Gaussian Lagrange DAF for solving partial different
equations, and therefore quantum dynamical problems
demonstrated by treating the Ornstein-Uhlenbeck Fokk
Planck equation which requires evaluation of both the fi
and second derivatives. A wave packet propagation met
is used for this study. It is found that both theL2 and L`

errors for the time-dependent distribution functions are of
order of 10213 at the later times, which is close to the com
puter roundoff limit. A wide range ofs/D ratios, and various
choices of polynomial degreeM , was found to yield this
order of accuracy, as shown in Fig. 1. This demonstrates
robustness of the interpolating DAF approach.

The robustness of the present approach was also
firmed by solving the nonlinear Burgers’ equation with
Reynolds number as large as 100. Our results range f
being ten to a few hundred times more accurate than thos
KT @61#, while obtained using fewer grid points. These r
sults indicate strongly that one should not have any difficu
in choosing the Gaussian Lagrange DAF parameters fo

-
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variety of linear and nonlinear PDE’s. An interesting a
useful study would be to examine the Lagrange DAF’s w
the nonclassical weights which raise naturally in statisti
mechanical problems@8,62#. In the future, we shall test th
Lagrange DAF’s for fitting multidimensional potentials. W
will also examine the accuracy of the Gaussian Lagra
DAF for a wide variety of linear and nonlinear partial diffe
ential equations. Finally, other types of interpolating DAF
are under study.
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