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In this paper, we present a class of distributed approximating functigbe&’s) for solving various
problems in the sciences and engineering. Previous DAF's were specifically constructed to avoid interpolation
in order to achieve the “well-tempered” limit, in which the same order error is made both on and off the grid
points. These DAF’s are constructed by combining the DAF concept with various interpolation schemes. The
approach then becomes the same as the “moving least squares” method, but the specific “interpolating
DAF’'s” obtained are new, to our knowledge. These interpolating DAF'’s are illustrated using Lagrange inter-
polation (the “LDAF” ) and a Gaussian weight function. Four numerical tests are used to illustrate the
LDAF’s: differentiation on and off a grid, fitting a function off a grid, time-dependent quantum dynamical
evolution, and solving nonlinear Burgers’ equatip81063-651X98)10204-0

PACS numbegs): 02.70—c

I. INTRODUCTION sical weight functions. For nonlinear systems the superposi-
tion principle is no longer valid, and complicated boundary
Recently we have conducted a series of investigations exconditions and geometries can significantly affect the relative
ploring the use of distributed approximation functionalsusefulness of spectral methods. Local methods, such as finite
(DAF's) for solving partial differential equatio®DE’s). In element methodg20,21,22,6] and finite difference methods
the course of these studies we developed a class of DAFI®23-27, are much easier to employ in these instances, and
which are of comparable effectiveness to other DAF’s inare the ones most commonly used. The fundamental differ-
solving PDE’s, but that have interesting features. Thes&nce between global methods and local methods is that the
DAF'’s also establish a connection with the “moving least former approximate the values of a function and its deriva-
squares” approach to interpolatidd—3]. The purpose of tives at a given grid point using all grid values of the func-
this paper is to discuss the theoretical underpinnings of thesgon on the entire domain, whereas the latter do this using
DAF’s, and to demonstrate their efficacy. only the values of the function on a compact set of grid
The present work is motivated by our investigations of ysints containing the given grid point as an interior point. In
solution methods for partial differential equations describinggeneraL if applicable, global, spectral, or pseudospectral

the time behavior of various systems. The study of suchyaihods are more accurate than local methods. It is desirable

equations(which arise in almost all areas of science ar_‘dto have a method that possesses spectral method accuracy

engl_neerlng IS oné of the most important research fields Nand local method flexibility for both linear and nonlinear
applied mathematics. There are two major classes of solution

systems. Distributed approximating functional methods are
methods, namely, global approach@sich as spectral and f this type[28—47
pseudospectral methagdand local methodfinite elements, orthis type L ,
finite volumes, and finite differencesFor linear equations A va_rlety of realizations of DAFs_ha\_/e bee_n proposed,
with relatively simple boundary conditions, such as the9€Pending on the nature of the application of intef8&t-
Schralinger equation in typical applications to quantum dy- 34} In particular, these DAF's have been successfully ap-
namics, various spectral and pseudospectral methbes9 phed tp the _solutlon of a yarlgty of partial differential equa-
are highly accurate, and can be implemented with a relaions, including those arising in quantum dynan{i8s—37,
tively small number of basis functions, thus achieving com-inear and nonlinear Fokker-Planck equatig88-40, and
putational efficiency. Most spectral and pseudospectral mettihe nonlinear Burgers’ equation with moderate and high
ods use standard basis functions constructed from wellReynolds numberg41,42. The ability of the DAF's to pro-
known polynomials (e.g., Jacobi, Laguerre, Legendre, vide an analytical representation of a function and its deriva-
Hermite, Chebyshev, ejc.The expansion coefficients are tives in terms of a discrete set of values of the function is
usually determined by themethod, the Galerkin method, or central to its successful use in various computational appli-
by a collocation method. Shizgal and co-worker’'s methodcations.
[8,9] utilizes nonstandard weight functions that are espe- In this work we introduce a new class of DAF’s which we
cially adapted to the problem under study, and thus mayefer to asinterpolatingDAF’s (and, by contrast, we refer to
reduce the number of grid points needed for a particular apearlier DAF’s asnoninterpolating. One such DARthe so
plication. This method becomes equivalent to the discretealled Lagrange or LDAFhas already been applied success-
variable representatioDVR) method[7,10-13, which is  fully to the solution of the linear bound-state Sotlirger
widely used in quantum-chemical dynamics, if one uses clasequation and a linear Fokker-Planck equation. In this paper,
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we discuss how our DAF’s can be obtained from the previ-mine the coefficientsa;(x) in Eqg. (2), for all pointsx (al-
ous DAF formalism[34]. though by no means is one limited to such an approach and
Interpolating DAF’s are constructed by combining inter- preliminary calculations suggest some interesting modifica-
polation formulas with decreasing weight functions. Theytions [43]). The resulting DAF coefficients;(x) are then
systematically generate distributed localized basis functioninear functionals of the set of all input data points. The
that are easily applied to nonlinear PDE&s are finite ele- pointwise variational function is of the forfi34]
ment and finite difference methogdbut they are extremely
accurate for time-dependent quantum dynamical problems, _ . 2
for fitting functions off the input grid, and for approximating M)'()_Z wi()[F06) = s, @
derivatives of functions.
This paper is organized as follows: The formalism of thewhere the sum is over all grid points amg(x) is the (non-
interpolating DAF'’s is introduced in Sec. Il. The numerical negative weight of theith grid point for origin x. The
application of the particular LDAF to fitting functions and weight which has been investigated most extensively is

their derivatives is presented in Sec. lll. Section IV illus- )
trates the time-dependent quantum dynamical application. Wi(X) = ex —(Xi—X) ©)
The utility and accuracy of our LDAF are further demon- e 207 '

strated using the nonlinear Burgers’ equation with a moder-

ate Reynolds number. Section V contains our conclusions. Substitution of Eq.(1) into Eqg. (4), followed by requiring
that \(x) be minimized with respect to the expansion coef-

Il. EORMALISM ficients, leads to linear algebraic equations for the expansion

coefficientsa;(x). The general form of the solution, at each
A. General variational approach and well-tempered DAF's X, IS

The general features of the theory of DAF’'s have been
extensively discussed in a number of a_rtid]éB—4Z._Here ai(x)=>, Wi (X) % (xe—X)[C 0] nf (%), ()
we outline only the basic ideas. The ultimate goal is to con- k.n
struct an approximate analytic representation of a function B o _
f(x), and its derivatives from the values of the function on a¥here the “overlap matrix"C is defined by
set of grid points in thex domain. In the DAF method one
first writes an approximation to the function at the point [C()‘()]j'”:% Wi(X) @] (Xk—X) dn(Xk—X). (7)

fap;{x'|>_<)=2 ai(X) gi(x" —x), (1) If ¢F(xk—x) also happens to be the biorthogonal comple-
ment[under summation over the grid, subject to the weight,

using a basis set of functions centeredxgrand then uses Wk(X)] of &;, then
the approximation only fox’=x (i.e., replacex’ by x) to

obtain [C(X)]jn=jn> 8

and the matrix element of the invers& 1(x)];,, is trivi-
Foar(X) = Fapd XIX) = 2 ai(X) $i(0). (2  ally alsod.
[ The variational functiorn\ (x) of Eq. (4) therefore leads to

) ) ) the DAF approximatior34]
In other words, each point has its own truncated basis set

with expansion coefficients, that in the general case are

themselves functions of. To obtain the DAF-approximated foar(X) = Z Hxxi) F(x)), 9
function atx, one evaluates the expansion for the pairat

the origin. Although we have not explicitly so indicated, the \where

basis functions can also depend implicitly on the point

This is a point crucial for our present considerations, and one

which we will discuss in some detail later. Equati¢®) ':()—(’)-(i):; wi(X) ;(0) &5 (% —X), (10
should be contrasted with a standard basis set expansion
and
f)=2 aigi(x). (3) )
' & =2 [C Y ntn (1D

This simple approach, as represented by(Bp.speaks more
to a very general conceptual framework rather than an opis the biorthogonal complement ef; under summation for
erational procedure. It is so general that virtualy fitting  the weightw;(x). It should be noted that such a variational
techniques, viewed in the right way, can be considered ainctional is also the starting point for the moving least-
special cases. To be useful one must specify exactly how thequares and reproducing kernel, meth¢iis3]. As noted
local approximation is to be made. previously, the approach in general leads to noninterpolative
In nearly all of our work to date, we have used a point-approximations to the function of interest. However, the fo-
wise, weighted least-squares variational principle to detereus of these earlier efforts has been on interpolative versions.
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In contrast, earlier DAF studies focused on taking advantage An important property of a well-tempered approximation
of the absence of interpolation to achieve the “well-is that it yields very accurate derivatives. In fact, it can be
tempered DAF’s”. shown that the derivative of the DAF approximation is the
This point can best be illustrated by an example, whichDAF approximation of the derivative for a well-tempered fit.
will be important in our later discussions. Consider a one-Thijs property of yielding highly accurate derivatives is ex-
dimensional grid, with the weight function of E(), and the  tremely important for solving differential equations. The
basis functionsx; —x)’, j=0 to M. Then well-tempered “differentiating Hermite DAF” has the very

I(Xaxi)EAgM(X—Xilg), (12) Slmp|e form
whereA is the grid spacingassumed to be uniformand
Bu(X— x| 0) = — F{—(x—x’)z I m(x=x"]o)
m(X—=Xj|o)= ex 5
i 27O 20 . N
- 1\"1 X—x' N eXp -~ 5,2
ano ( ) 2n ’ (13)

n! M/2

>
n=0

4l Vio 1\" 1 X—Xx'
_Z) (-1) o sz(m), (15

is the so-called Hermite DAF. The functioits,,, are not,
strictly speaking, Hermite polynomiafas the notation might
suggest, or for that matter polynomials at all. In fact, they
are quite complicated functiong.e., no simple expression which is easily established from the generating function of
for them existy, and, although it is not so indicated, they the Hermite polynomials.
depend implicitly on the placement of between its two Outside the well-tempered limitvhich, for example, oc-
neighboring grid pointsi.e., the value ok modulo the grid. curs for the Hermite DAF it is too small orM is too large
However, asA —0, H,, becomes the 2th Hermite polyno- for fixed A) the fit becomes increasingly interpolatiy@ore
mial. nearly exact on the grid pointdut inaccurate off the grid.
An interesting and important fact is that these functionsThis leads to increasingly inaccurate derivatives.
approach the Hermite polynomial limit very sharply, and for It should be pointed out that a well-tempered DAt
values ofA that are still large enough to be extremely usefula projection operator on the gride., 2#1). In fact, in the
for practical fitting applications. In the regime where Eq.limit that the grid spacing goes to zero, the Hermite DAF of
(13) can be effectively expressed in terms of Hermite poly-Eq. (13) has a continuously indexed spectrum with an eigen-
nomials, we say that the approximation is “well tempered.” value of unity only at a single poiriall other eigenvalues are
(This is a fundamental feature of our earlier DAF analysisless than unity Despite this the Hermite DAF in the limit
and, so far as we have been able to determine, distinguishés— 0 is an identity for all polynomials of degree M + 1.
that work from the interpolative versions of the moving This might at first seem to be a contradictory result, but it is
least-squares methgodThe DAF approximation being well in fact possible because polynomials do not belong to the
tempered is tantamount to being able to write Hilbert space. Because well-tempered DAF’s are not projec-
tion operators, their repeated application will degrade the fit
, , of a Hilbert space function. One might think that this would
fDAF(X):J dx’ Sy (x—X"[o)F(X") (14) present difficulties in applications, but in fact the degradation
of the fit is predictable, and controllable due to its near lin-
(the so-called “continuous DAF” cas€30,31,34), from earity. In addition to yielding highly accurate derivatives, the
which it is clear that the grid points have in a sense lost theiwell-tempered property makes DAF’s extremely useful for
special identity and that the well-tempered DAF fit is asdata fitting and smoothin@ncluding eliminating experimen-
good off the grid as it is on[Note that the well-tempered tal noisg, data padding, predicting, and similar data manipu-
Hermite DAF can be obtained in a heuristic way by discretiz-lations that are applicable in a wide variety of field4d—-4§.
ing Eq. (14), although at first blush discretizing&function However, the general theory of DAF's that we have out-
integral—even if thes function is only approximate—might lined allows the possibility of a kind of DAF quite different
seem risky. Further note that in the linsit-0 orM —o the  from well-tempered DAF’s such as our Hermite DAF ex-
Hermite DAF goes exactly to the Dirac delta functipn. ample. These are interpolative and hence projection opera-
Saying that “the fit is as good off the grid as on” implies tors. Nevertheless, they still deliver highly accurate deriva-
that there is a unique, underlying function being approxi-tives, and consequently can be used to solve PDE’s as
mated. What this means is that fany regular grid with  effectively as well-tempered DAF'¢as we shall presently
spacingA, there is a unique set of functional values on thedemonstrate Their repeated application does not degrade
grid that would give rise to exactly the same analysis, andfunctions, preserving all the information in the data set.
therefore, from the functional values on any one grid, one isTherefore, they cannot be used for data smoothing and pre-
able to deduce the entire functiokiThis function is, of dicting. However, since they preserve all information in the
course, the one that can be constructed from the grid data lata set, they are useful for quite different types of applica-
Fourier transform theory using continuous wave numbers itions. In Sec. Il B we develop these “interpolative DAF's”
the range— m/A<k<m/A.) more fully.
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B. Basis set choice for interpolating DAF’s viewed as a “Kronecker delta function(discrete on one
index and continuous on the other, as opposed to either the
Kronecker delta or the Dirac delta functiofcquations(16)
and(18) then respectively assure the twin conditions

The procedure outlined in Sec. Il A is very general. In
particular, every point has its own basis set for application
of the DAF variational principle. For most applications of
DAF'’s, we have used a polynomial basis under a Gaussian
weight. The only two parameters of the fit then are the width > 8(xj,x) =1 (19
(variance, o, of the Gaussian, and the degmdeof the Her- k
mite polynomial, which is, of course, an integéActually and
there is a generalized form of the DAF that, in effect, varies
the “order” continuously[47].) In practice we have most
often taken both parameters to be constant over the entire f dx’ 6(x’,x))=A (20)
domain. Under these circumstances one can either choose the
basis set to have the same form for each point relative to itfor any pointx; on the grid. Through these conditions the
local origin[i.e., (x"—x)!, j=0, toM, whereM equals the nature of the interpolating DAF as a Kronecker delta func-
highest degree polynomigbr the same form for each point tion (“halfway” between a Kronecker delta and a Dirac
relative to an absolute origifi.e., (x)!, j=0, to M], since  delta function is made manifest.
these are equivalenfThis same equivalence exists fgk*’ For the case where the weight function is local and the
or any other basis set that is also a basis for the translatioRAF procedure is prescriptive, neither conditioff) or
group) Once the basis set and weight function have beeif20) is precisely obeyed, but, by appropriate choice of DAF
chosen, then the procedure for generating the DAF approxiparameters, they can be made to be satisfied to any desired
mation is completely prescriptive. accuracy(up to the well-tempered limit Obviously, for the

Let us now consider the situation where the weight isconstant weight case where Ed.6) is satisfied, the DAF
constant(which, for example, can be thought of as the limit approximation is strictly an interpolatiofi.e., exact on the
where the width of the Gaussian weight becomes infinite grid); hence such a DAF approximation can never be well
Although there is no difficulty in principle in constructing temperedi.e., of comparable accuracy on and off the grid
the DAF, as outlined in Sec. Il A, we can no longer use aHowever, it should be emphasized that being well tempered
polynomial basis(or any similar basis set that cannot be does not necessarily equate to being accurate.
normalized on the grid Stated equivalently, the overlap ma-  The Gaussian Lagrange DAIGLDAF) [48]
trix C(x) is not well defined. To carry out the procedure for M ( )
constructing the DAF, it is necessary to have a basis set for w2202 X—X;
which C(x) can be computed. Any basis gg;}, indexed O (XX o) = €% jl;[k (Xk—X;) (21)
on the grid, for which

satisfies Eq(19), but does not satisfy Eq20) exactly, but it
¢i(Xi) = Bj.» (16) can be made to so to arbitrary accuracy by choodhguf-
ficiently large for fixedo andA. Thus it generates an accept-
able DAF approximation for the constant weight case. Note
i(X) = (XX, X)), (17) that Eq.(2_1) is only_ pc_)site_d, and is in no sense derived.
However, its form is implied by the fact that the well-
satisfies the DAF procedure requirements. Conversely, btempered Hermite DAF for very largé has almost evenly
symmetric orthogonalization on the grid, any normalizablespaced zeros that lie very near to the grid poiifits those
basis is equivalent to such a basis. It is obvious that not evergeros closest to the centelEquation(1) provides a good
set of basis functions that satisfies E¢5) and (17) is ac-  approximation long before the lardé limit is ever realized
ceptable for constructing a satisfactory approximation[49,50.
Hence the case where one satisfies the above two conditions

and which satisfies translational invariance

cannotbe made prescriptive with respect to off-grid predic- Ill. GAUSSIAN LAGRANGE DAF FITTING
tions, and is fundamentally different from where the weight AND DIFFERENTIATION
is local. ) .
Since not all basis sets that satisfy E¢E5) and (17) are The quality of any computational method can be evalu-

acceptable, it is necessary to impose an additional conditiofit€d Py how well the method approximates a function off the
on the ;(x) in order to generate an acceptable approxima-'”pUt grid points, a_nd the derlvgtlves of the f_unctllon both on
tion. The condition we adopt is that every grid point contrib- @nd Off the grid points. The ability of approximating a func-

utes equivalently to the approximatiofor a uniform grid, tion from a dis_cre_te set of data points _is important for a wide
this means that range of applications, such as potential fittifid —54. Ac-

curately approximating various derivatives is crucial for
solving ordinary and partial differential equations. In this
f dx’ ¢j(x’)=A, (18 section we examine the accuracy of the Gaussian Lagrange
DAF for differentiation on or off a grid and for fitting a
where A is the grid spacing(For a nonuniform grid the function off the grid.
integral is equal to thaverageof the spacings to the left and For the application of spectral methods, like that of Shiz-
to the right of grid pointx;.) The resulting DAF from the gal [8], to the solution of partial differential equations, a
variational principle is5(x,X;) = ¢;(x). This quantity can be polynomial basis set is typically chosen. The degree of the
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FIG. 1. Errors of the Gaussian Lagrange DAF differentiation and fittind (g} = e~ 5" cos()+sin(x). Solid and dashed lines denote
thelL., errors. Triangles and squares denoteltherrors. Solid lines and triangles denote the errors in the first two derivatives evaluated on
the grid. Dashed lines and squares denote the errors for fitting the function off théayfid=40. (b) M =60. (c) M =80. (d) M=100.

polynomial is determined by the number of grid points used M =40, 60, 80, 100.

in the problem. In contrast, in the DAF methods, the degree o ] .

of the polynomials is more or less independent of the numbefs shown in Fig. 1, the present Gaussian Lagrange DAF is
of grid points. Therefore an appropriate polynomial Cje(‘:]reéextrem.ely accurate for differentiation and is not sensitive to
M must be chosen for a given problem. A sufficiently largetn€ ratioo/A over a wide range of values. Whevh ranges

M value is important for accuradhich explains why the from 80 to 100, there is a large interval ofA ratios that

Gaussantes funclns used 1 he mathemalical theory fe1Ye1S SXTErely oh aceuracy fr the e etk
distributions are not practical for numerical applicatipns '

X R ranges of the ratios for the function and its derivatives in this
The o value determines the range of data contributing to th«eEeSt problem are also the ranges of ratios for which the

predlc_tlpn at any off-grid poir. Thg value of the Gaussian Gaussian Lagrange method provides accurate solutions to the
is sufficiently small as to be approximated by zero at about gme_dependent Fokker-Planck equations and nonlinear Bur-
Q|stance of 1% Therefore, further increases M_W|II not gers’ equatior{48]. This means that it is relatively easy to
improve the accuracy due to the cutoff provided by thechgose the parameters of the Gaussian Lagrange DAF for
Gaussian factor for giverr and grid spacing\. In uniform  gynamical calculations. More details in this regard are given
grid cases, for a sufficiently large value, sayM =80, the i sec. V.
ratio of o/A is the only parameter that must be appropriately The apility of the Gaussian Lagrange DAF to fit a func-
chosen. The illustrative functioh(x) used for the present tjon is demonstrated by predicting values of the function off
study is the grid. We take the same function as defined in(&8) as
_ our test function, and still use as input values of the function
f(x)=e"5"*¥ cog Bx) +sin(ax), (22)  at 40 grid points l=40) inside the interval0,7]. We pre-
dict the function at 60 evenly spaced grid points within the
where we taker=1 and=2, and 40 grid pointsNN=40)  same intervalthus focussing on off-grid fitting Only the
are used inside the interval ¢0,7]. Both thelL, andL, L., errors are recorded for fitting off the grithe squares in
errors for differentiations are calculated for four differémt  Fig. 1). The Lagrange DAF is able to provide 14-significant-
values figure accuracy in fitting this function off the grid.
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TABLE 1. Errors for solving the Ornstein-Uhlenbeck Fokker-Planck equation. Numbers in brackets
denote powers of 10.

N=50, At=0.05 N=100,At=0.01

[-5,5] [-5.5,5.5 [-11.5,11.5
Time L, L. L, L. L, L.

01  16[-02] 207-02] 150-04] 217-04] 6.40-0.2  8.04—02]
02  137-03] 1.64-03] 179-06] 290-06] 4.99-03]  4.94—03]
03  3.14-04] 447-04] 297-07] 50§-07] 599-04]  5.49-03]
06  12[-05 1.71-05] 1.43-08] 21G-08] 9.01-06]  8.49—06]
1.0  1.17-06] 154-06] 154-09] 2.04-09] 1.4§-07]  1.371-07]
20 523-08] 599-08 757-11] 870-11]  4.3-10]  2.60—10]
40  271-09] 229-09] 35§-12] 367-12] 2.83-10]  2.60—10]
6.0 84[-10] 6.63—-10]1 579-13] 567-13] 2.79-10]  2.49-10]
80  6.18-10] 594-10] 2.39-13] 2.0§-13] 2.79-10]  2.4§-10]
100  4.99-10] 4.70-10] 2.9§-13] 1.59-13] 2.74-10]  2.44-10]

IV. GAUSSIAN LAGRANGE DAF SOLUTION TO 0.25 and 0.125, respectively. Two sets of grid poi(its
QUANTUM AND CLASSICAL DYNAMICAL PROBLEMS =50 and 100 are used with corresponding intervals taken as

Another important test for the present Gaussian Lagrang 5.5 and[—5.5,5.9, respectively, and the initia# func-

DAF is its accuracy for solving various quantum and classi-i:]m;srir?]:ocateg ?Phcl) ._GS%nd; dO.fOS(') rersp%cg&\_)/elyrq dTgeogmre
cal (nonlineaj dynamical time evolutions. Since analytical crements used ToN=oY a are H.U> a O Te

solutions to real physical problems are limited to a fewspectwgly. We have usedafourth order expansi 4) Of.
simple cases, there is great interest in developing metho path integral formulation of the Fokker-Planck equation.

for accurately and efficiently solving ordinary and partial dif- e refer the reader to Refs39-41] for the details of the

ferential equations, which are important to a wide range o{netho_d. Itis fognd that, for each fixéd value, a wide range
scientific problems. of ratios o/A yield accurate results for the present time-

dependent problem. This is illustrated in Fig(24<o/A
<3.1 for M=80). The L, and L., errors, using the ratio
o/A=2.88 andM =80 for a range of propagation times are
A useful benchmark problem for testing numerical timelisted in Table I. It is evident that using a relatively small
propagation methods is the Ornstein-Uhlenbeck processumber of grid points and reasonably large time increments,
which involves both the first and second derivatives. Thehe Gaussian Lagrange DAF approach is able to provide ac-
Ornstein-Uhlenbeck process is a stationary Markov procesguracy close to the computer roundoff limit for solving a
and its corresponding Fokker-Planck equation describing guantum dynamical equation. A basic tendency of the accu-

A. Ornstein-Uhlenbeck process

linear drift-diffusion system is given by racy can be summarized as follows: the more grid points and
) the later the time, the more accurate the solution is. It is

of(x,t) _ aIxf(x,0)] +D a7t (x.) (29  Noted that the time-dependent Gaussian Lagrange DAF ap-

ot Y IX ox? proach easily provides sufficient accuracy for most practical

. i L purposes even if one employs a small number of grid points
wherey andD are positive constants. With an initidfunc-  ith very large time step At~0.05). We expect that an
tion distribution localized ax,, the solution of the Ornstein- jncrease in accuracy for the earlier time solutions can be
Uhlenbeck Fokker-Planck equation is given as a Gaussian fyrther achieved if the initialé functions are replaced by

numerically smoother functions.

Y
2D w\/(l—ezy“to))] B. Burgers’ equation

y(x—xge 27(t710))2 Burgers’ equatiori59], in one space dimension, given by
Xexpg — 2D(1—e 271 | (29

f(x,t)=

Ju au 1 4%u

The stationary Gaussian distribution results whemh—t,) ot Y ax T Reax®
>1. The Ornstein-Uhlenbeck process has various physical

applications, such as to a laser field far bel@w above its ~ whereu(x,t) is a velocitylike quantity. There is thus an anal-
threshold[55], to a linear overdamped oscillator in the pres-ogy between Burgers’ equation and the Navier-Stokes equa-
ence of colored Gaussian noi6], and to the velocity re- tion in the roles played by the nonlinear advection and the
laxation of a Rayleigh ga$§57]. The Ornstein-Uhlenbeck viscous diffusion terms, and for this reason the analytical
Fokker-Planck equation is also computationally importantsolvability of the former makes it an important test problem
and has been used for testing various new numerical schemaamerical methods in fluid dynamics. One of the major
[9,58]. In the present computationg,and D are chosen as sources of difficulty for solving both Burgers’ equation and

(25
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range from being ten to a few hundred times more accurate
than those of Kakuda and Tosalél] (KT), while obtained
using fewer grid points.

V. CONCLUSION

A class of DAF's, called interpolating DAF's, are pro-
posed for a wide range of numerical applications. The ap-
proach is illustrated using the Gaussian Lagrange DAF.
These DAF’s are interpolative solutions of the variational
equations generated by a pointwise least squares procedure,
and they can be used for approximating any function, or
distribution and its derivatives having polynomial growth.
The Lagrange DAF'’s, like many other DAF’s, can be viewed
as a natural extension to familiar Dira@tsequences and/or
x Gaussian test functions, and therefore can be regarded as
generalizedé sequences. However, both the usualse-
guences and the Gaussian test functions do not have much
numerical utility, whereas the DAF’s are powerful numerical
computational tools.

d- The Lagrange DAF'’s are constructed by combining the
al?AF concept with the Lagrange interpolation idea. Three
dypes of numerical problems, including differentiation on
and off a grid, fitting a function off a grid, time-dependent
quantum dynamical evolution, and a standard test problem
from fluid dynamics, are used to demonstrate the usefulness,

FIG. 2. The exact and numerical solutions of the Burgers’ equa
tion (Re=100). Solid line: exact. Triangle: presgdb grid points.
Square: Kakuda and TosakB00 elements and six iterations

Navier-Stokes equation is the occurrence of inviscid boun
ary layers produced by the steepening effect of the nonline
advection term. It is customary to test new methods in thi
field by applying them to Burgers’ equation.

We consider Eq(25) with the following initial-boundary

conditions: A .
test the accuracy, and explore the limitations of the Gaussian
u(x,0)=sin(7x), Langrange DAF, a particular realization of the Lagrange
s. The parameters in the Gaussian Lagrange are
(26 DAF's. Th in the Gaussian L DAF
u(0t)=u(1lt)=0. chosen to yield exact results on a gfitle so-called interpo-

lation property. We obtainL., errors of 10 for the func-
The exact solutiori60] for this problem is available as an tjgn off the grid and 10 3 and 102 or better, for first and
infinite series for the parameter range<RED0. For the pa- second order derivatives on the grid respectively for a wide
rameter Re=100, the present GLDAF calculations use threerange of parameters. This is illustrated by using an analyti-
sets of grid pointg25, 35, and 45 uniformly spaced points cally known function with 40 input grid points in the interval
for interval[0,1]), with a time increment oAt=0.01 and a of [0,7]. Because the LDAF's easily generalize to higher
second order Taylor expansion in time. Both the numericallimensions, this is potentially of use in fitting potential en-
solution and the exact solution are plotted in Fig. 2. There isrgyab initio data to use in molecular dynamics calculations.
no detectable difference between the two solutions. At lateThis test also has a very general significance since, as we
times, the solution develops a sharp change at the righdiscuss below, both the accuracy and the validity range of
boundary which can induce numerical instabiliti€Sibbs  the parameters are confirmed in an entirely different applica-
oscillationg. The maximum absolute errork {) for all sets  tions, namely, solving time-dependent partial differential
of grid points at four different times are listed in Table II. It equations of both linear and nonlinear types. The power of
is interesting to compare the present results with the earliethe Gaussian Lagrange DAF for solving partial differential
accurate numerical results recently obtained using the genegquations, and therefore quantum dynamical problems, is
alized boundary element method by Kakuda and Tosakdemonstrated by treating the Ornstein-Uhlenbeck Fokker-
[61]. These authors used 100 elements, up to six iteration®lanck equation which requires evaluation of both the first
and the same time increment as oufd € 0.01). While the  and second derivatives. A wave packet propagation method
errors in both methods are very small, the present resultig used for this study. It is found that both the and L.,

errors for the time-dependent distribution functions are of the

TABLE II. L., errors of the numerical solutions for Burgers’ qrder of 10 13 at the later times, which is close to the com-

equation. The numbers in brackets denote powers of 10. puter roundoff limit. A wide range of/A ratios, and various
choices of polynomial degre®, was found to yield this

¢ KT Presert Preserf Presert order of accuracy, as shown in Fig. 1. This demonstrates the
0.4 2.6-2] 1.-2] 3.4 -3] 1.01-3] robustness of the interpolating DAF approach.
0.8 2.9-2] 2.6-2] 6.6 —3] 1.4 -3] The robustness of the present approach was also con-
1.2 1.8-2] 8.0 —3] 1.7-3] 1.9-4] firmed by solving the nonlinear Burgers’ equation with a
3.0 6.9-3] 45 -5] 23-5] 2.7-5] Reynolds number as large as 100. Our results range from
being ten to a few hundred times more accurate than those of
N=25. KT [61], while obtained using fewer grid points. These re-
bN=35. sults indicate strongly that one should not have any difficulty

‘N=45, in choosing the Gaussian Lagrange DAF parameters for a
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variety of linear and nonlinear PDE’s. An interesting and ACKNOWLEDGMENTS
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