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CLASSIFICATION OF ISING VECTORS

IN THE VERTEX OPERATOR ALGEBRA V +
L

HIROKI SHIMAKURA

Abstract. Let L be an even lattice without roots. In this article, we classify all Ising

vectors in the vertex operator algebra V +
L

associated with L.

Introduction

In vertex operator algebra (VOA) theory, the simple Virasoro VOA L(1/2, 0) of central

charge 1/2 plays important roles. In fact, for each embedding, an automorphism, called

a τ -involution, is defined using the representation theory of L(1/2, 0) ([Mi96]). This is

useful for the study of the automorphism group of a VOA. For example, this construction

gives a one-to-one correspondence between the set of subVOAs of the moonshine VOA

isomorphic to L(1/2, 0) and that of elements in certain conjugacy class of the Monster

([Mi96, Hö10]).

Many properties of τ -involutions are studied using Ising vectors, weight 2 elements

generating L(1/2, 0). For example, the 6-transposition property of τ -involutions was

proved in [Sa07] by classifying the subalgebra generated by two Ising vectors. Hence it is

natural to classify Ising vectors in a VOA. For example, this was done in [La99, LSY07]

for code VOAs. However, in general, it is hard to even find an Ising vector.

Let L be an even lattice and VL the lattice VOA associated with L. Then the subspace

V +
L fixed by a lift of the −1-isometry of L is a subVOA of VL. There are two constructions

of Ising vectors in V +
L related to sublattices of L isomorphic to

√
2A1 ([DMZ94]) and

√
2E8

([DLMN98, Gr98]).

The main theorem of this article is the following:

Theorem 2.5. Let L be an even lattice without roots and e an Ising vector in V +
L . Then

there is a sublattice U of L isomorphic to
√
2A1 or

√
2E8 such that e ∈ V +

U .

We note that this theorem was conjectured in [LSY07] and that if L/
√
2 is even and if L

is the Leech lattice, then this theorem was proved in [LSY07] and in [LS07], respectively.
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We also note that if L has roots then the automorphism group of V +
L is infinite, and V +

L

may have infinitely many Ising vectors.

In this article, we prove Theorem 2.5, and hence we classify all Ising vectors in V +
L .

Our result shows that the study of τ -involutions of V +
L is essentially equivalent to that of

sublattices of L isomorphic to
√
2E8 (cf. [GL11, GL12]).

The key is to describe the action of the τ -involution on the Griess algebra B of V +
L .

Let e be an Ising vector in V +
L and L(4; e) the norm 4 vectors in L which appear in the

description of e with respect to the standard basis of (V +
L )2 (see Section 2 for the definition

of L(4; e)). By [LS07], the τ -involution τe associated to e is a lift of an automorphism g of

L. We show in Lemma 2.1 that g is trivial on {{±v} | v ∈ L(4; e)}. This lemma follows

from the decomposition of B with respect to the adjoint action of e ([HLY12]), the action

of τe on it ([Mi96]) and the explicit calculations on the Griess algebra ([FLM88]). By this

lemma, we can obtain a VOA V containing e on which τe acts trivially. By [LSY07] e is

fixed by the group A generated by τ -involutions associated to elements in L(4; e). Hence

e belongs to the subVOA V A of V fixed by A. Using the explicit action of A, we can find

a lattice N satisfying e ∈ V +
N and N/

√
2 is even. This case was done in [LSY07].

1. Preliminaries

1.1. VOAs associated with even lattices. In this subsection, we review the VOAs VL

and V +
L associated with even lattice L of rank n and their automorphisms. Our notation

for lattice VOAs here is standard (cf. [FLM88]).

Let L be a (positive-definite) even lattice with inner product 〈 · , · 〉. Let H = C⊗Z L

be an abelian Lie algebra and Ĥ = H ⊗ C[t, t−1] ⊕ Cc its affine Lie algebra. Let Ĥ− =

H ⊗ t−1C[t−1] and let S(Ĥ−) be the symmetric algebra of Ĥ−. Then MH(1) = S(Ĥ−) ∼=
C[h(m) | h ∈ H,m < 0] · 1 is the unique irreducible Ĥ-module such that h(m) · 1 = 0 for

h ∈ H , m ≥ 0 and c = 1, where h(m) = h⊗ tm. Note that MH(1) has a VOA structure.

The twisted group algebra C{L} can be described as follows. Let 〈κ〉 be a cyclic group

of order 2 and 1 → 〈κ〉 → L̂ → L → 1 a central extension of L by 〈κ〉 satisfying the

commutator relation [eα, eβ] = κ〈α,β〉 for α, β ∈ L. Let L → L̂, α 7→ eα be a section and

ε(, ) : L× L → 〈κ〉 the associated 2-cocycle, that is, eαeβ = ε(α, β)eα+β. We may assume

that ε(α, α) = κ〈α,α〉/2 and ε(, ) is bilinear by [FLM88, Proposition 5.3.1]. The twisted

group algebra is defined by

C{L} ∼= C[L̂]/(κ + 1) = SpanC{eα | α ∈ L},

where C[L̂] is the usual group algebra of the group L̂. The lattice VOA VL associated

with L is defined to be MH(1)⊗ C{L} ([Bo86, FLM88]).
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For any sublattice E of L, let C{E} = SpanC{eα | α ∈ E} be a subalgebra of C{L}
and let HE = C⊗Z E be a subspace of H = C⊗Z L. Then the subspace S(Ĥ−

E )⊗ C{E}
forms a subVOA of VL and it is isomorphic to the lattice VOA VE .

Let O(L̂) be the subgroup of Aut(L̂) induced from Aut(L). By [FLM88, Proposition

5.4.1] there is an exact sequence of groups

1 → Hom(L,Z/2Z) → O(L̂) →̄ Aut(L) → 1.

Note that for f ∈ O(L̂)

(1.1) f(eα) ∈ {±ef̄(α)}.

By [FLM88, Corollary 10.4.8], f ∈ O(L̂) acts on VL as an automorphism as follows:

(1.2) f(hi1(n1)hi2(n2) . . . hik(nk)⊗ eα) = f̄(hi1)(n1)f̄(hi2)(n2) . . . f̄(hik)(nk)⊗ f(eα),

where ni ∈ Z<0 and α ∈ L. Hence O(L̂) is a subgroup of Aut(VL).

Let θ be the automorphism of L̂ defined by θ(eα) = e−α, α ∈ L. Then θ̄ = −1 ∈ Aut(L).

Using (1.2) we view θ as an automorphism of VL. Let V +
L = {v ∈ VL | θ(v) = v} be the

subspace of VL fixed by θ. Then V +
L is a subVOA of VL. Since θ is a central element of

O(L̂), the quotient group O(L̂)/〈θ〉 is a subgroup of Aut(V +
L ). Note that V +

L is a simple

VOA of CFT type.

Later, we will consider the subVOA of V +
L generated by the weight 2 subspace.

Lemma 1.1. (cf. [FLM88, Proposition 12.2.6]) Let L be an even lattice without roots. Let

N be the sublattice of L generated by L(4). Then the subVOA of V +
L generated by (V +

L )2

is (VN ⊗MH′(1))+, where H ′ = (〈N〉C)⊥ in 〈L〉C.

1.2. Ising vectors and τ-involutions. In this subsection, we review Ising vectors and

corresponding τ -involutions.

Definition 1.2. A weight 2 element e of a VOA is called an Ising vector if the vertex

subalgebra generated by e is isomorphic to the simple Virasoro VOA of central charge

1/2 and e is its conformal vector.

For an Ising vector e, the automorphism τe, called the τ -involution or Miyamoto invo-

lution, was defined in ([Mi96, Theorem 4.2]) based on the representation theory of the

simple Virasoro VOA of central charge 1/2 ([DMZ94]).

Let V be a VOA of CFT type with V1 = 0. Then the first product (a, b) 7→ a · b = a(1)b

provides a (nonassociative) commutative algebra structure on V2. This algebra V2 is called

the Griess algebra of V . The action of τe on the Griess algebra was described in [HLY12]

as follows:
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Lemma 1.3. [HLY12, Lemma 2.6] Let V be a simple VOA of CFT type with V1 = 0 and

e an Ising vector in V . Then B = V2 has the following decomposition with respect to the

adjoint action of e:

B = Ce⊕Be(0)⊕ Be(1/2)⊕ Be(1/16),

where Be(k) = {v ∈ B | e ·v = kv}. Moreover, the automorphism τe acts on B as follows:

1 on Ce⊕ Be(0)⊕ Be(1/2), −1 on Be(1/16).

In the proof of the main theorem, we need the following lemma:

Lemma 1.4. [LSY07, Lemma 3.7] Let V be a VOA of CFT type with V1 = 0. Suppose

that V has two Ising vectors e, f and that τe = id on V . Then e is fixed by τf , namely

e ∈ V τf .

Let L be an even lattice of rank n without roots, that is, L(2) = {v ∈ L | 〈v, v〉 =

2} = ∅. Then (V +
L )1 = 0, and we can consider the Griess algebra B = (V +

L )2 of V +
L .

Let {hi | 1 ≤ i ≤ n} be an orthonormal basis of H = C ⊗Z L = 〈L〉C. Set L(4) =

{v ∈ L | 〈v, v〉 = 4}. For 1 ≤ i ≤ j ≤ n and α ∈ L(4), set hij = hi(−1)hj(−1)1 and

xα = eα + e−α = eα + θ(eα). Note that xα = x−α.

Lemma 1.5. [FLM88, Section 8.9]

(1) The set

{hij , xα | 1 ≤ i ≤ j ≤ n, {±α} ⊂ L(4)}
is a basis of B.

(2) The products of the basis of B given in (1) are the following:

hij · hkl = δikhjl + δilhjk + δjkhil + δjlhik,

hij · xα = 〈hi, α〉〈hj, α〉xα,

xα · xβ =



















ε(α, β)xα±β if 〈α, β〉 = ∓2,

α(−1)21 if α = ±β,

0 otherwise.

Let α ∈ L(4). Then the elements ω+(α) and ω−(α) of V +
L defined by

(1.3) ω±(α) =
1

16
α(−1)2 · 1± 1

4
xα

are Ising vectors ([DMZ94, Theorem 6.3]). The following lemma is easy:

Lemma 1.6. The automorphisms τω±(α) of V
+
L act by

u⊗ xβ 7→ (−1)〈α,β〉u⊗ xβ for u ∈ MH(1) and β ∈ L.
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In general, the following holds:

Proposition 1.7. [LS07, Lemma 5.5] Let L be an even lattice without roots and e an

Ising vector in V +
L . Then τe ∈ O(L̂)/〈θ〉.

We note that the main theorem was proved if L/
√
2 is even as follows:

Proposition 1.8. [LSY07, Theorem 4.6] Let L be an even lattice and e an Ising vector in

V +
L . Assume that the lattice L/

√
2 is even. Then there is a sublattice U of L isomorphic

to
√
2A1 or

√
2E8 such that e ∈ V +

U .

2. Classification of Ising vectors in V +
L

Let L be an even lattice of rank n without roots and e an Ising vector in V +
L . Then by

Lemma 1.5 (1)

(2.1) e =
∑

i≤j

ceijhij +
∑

{±α}⊂L(4)

de{±α}xα,

where ceij , d
e
{±α} ∈ C. Set L(4; e) = {α ∈ L(4) | de{±α} 6= 0}, H1 = 〈L(4; e)〉C and H2 = H⊥

1

in H . Note that if α ∈ L(4; e) then −α ∈ L(4; e). Without loss of generality, we may

assume that hi ∈ H1 if 1 ≤ i ≤ dimH1. Then H2 = SpanC{hj | dimH1 + 1 ≤ j ≤ n}.
By Proposition 1.7, τe ∈ O(L̂)/〈θ〉. Since e ∈ VL, we regard τe as an automorphism of

VL. Then τe ∈ O(L̂), and set g = τ̄e ∈ Aut(L). Since τe is of order 1 or 2, so is g. The

following is the key lemma in this article:

Lemma 2.1. Let β ∈ L(4; e). Then g(β) ∈ {±β}.

Proof. By (1.1) and (1.2),

(2.2) τe(xβ) ∈ {±xg(β)}.

On the other hand, τe(e) = e, (1.2) and (2.1) show

(2.3) τe(d
e
{±β}xβ) = de{±g(β)}xg(β).

By (2.2) and (2.3),

(2.4)
de{±g(β)}
de{±β}

∈ {±1}.

Suppose g(β) /∈ {±β}. Then xβ − τe(xβ) is non-zero, and it is an eigenvector of τe with

eigenvalue −1. By Lemma 1.3, we have

(2.5) e · (xβ − τe(xβ)) =
1

16
(xβ − τe(xβ)).
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Let us calculate the image of both sides of (2.5) under the canonical projection µ :

(V +
L )2 → SpanC{hij | 1 ≤ i ≤ j ≤ n} with respect to the basis given in Lemma 1.5 (1).

By (2.2) the image of the right hand side of (2.5) under µ is 0:

(2.6) µ

(

1

16
(xβ − τe(xβ))

)

= 0.

Let us discuss the left hand side of (2.5). By Lemma 1.5 (2) and (2.4), we have

e · (xβ − τe(xβ)) =





∑

i≤j

ceijhij +
∑

{±α}⊂L(4)

de{±α}xα



 · (xβ − τe(xβ))

∈ de{±β}
(

β(−1)21− g(β)(−1)21
)

+ SpanC{xγ | {±γ} ⊂ L(4)}.

Thus

µ(e · (xβ − τe(xβ))) = de{±β}
(

β(−1)21− g(β)(−1)21
)

= de{±β} (β − g(β)) (−1)(β + g(β))(−1)1.

This is not zero by g(β) /∈ {±β}, which contradicts (2.5) and (2.6). Therefore g(β) ∈
{±β}. �

For ε ∈ {±}, set L(4; e, ε) = {v ∈ L(4; e) | g(v) = εv}, Le,ε = 〈L(4; e, ε)〉Z, and

Hε
1 = 〈Le,ε〉C. Since g preserves the inner product, H1 = H+

1 ⊥ H−
1 and g acts on

H2 = H⊥
1 . Let H

±
2 be ±1-eigenspaces of g in H2. For ε ∈ {±}, let W ε be a lattice of full

rank in Hε
2 isomorphic to an orthogonal direct sum of copies of 2A1. Then

(2.7) MHε
2
(1) ⊂ VW ε.

Lemma 2.2. The Ising vector e belongs to the VOA V +
Le,+⊕W+ ⊗ V +

Le,−⊕W−, and τe = id

on this VOA.

Proof. By Lemma 2.1, L(4; e) = L(4; e,+) ∪ L(4; e,−). Hence, by (2.1) and (2.7),

(2.8) e ∈ (VLe,+ ⊗MH+

2
(1)⊗ VLe,− ⊗MH−

2
(1))+ ⊂ V +

Le,+⊕W+⊕Le,−⊕W−.

Since g acts by ±1 on Le,± ⊕W±, the subspace of (2.8) fixed by τe is

V +
Le,+⊕W+ ⊗ V +

Le,−⊕W−.

Since e is fixed by τe, we have the desired result. �

We now prove the main theorem.

Theorem 2.3. Let L be an even lattice without roots. Let e be an Ising vector in V +
L .

Then there is a sublattice U of L isomorphic to
√
2A1 or

√
2E8 such that e ∈ V +

U .
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Proof. Set V = V +
Le,+⊕W+ ⊗ V +

Le,−⊕W−. By Lemma 2.2, e belongs to V and τe = id on V .

Let A = 〈τω±(β) | β ∈ L(4; e)〉. By Lemma 1.4, e belongs to the subVOA V A of V fixed

by A. Since e is a weight 2 element, it is contained in the subVOA generated by (V A)2.

By Lemmas 1.1 and 1.6 and (2.7) (cf. (2.8)),

e ∈ V +
N+⊕K+ ⊗ V +

N−⊕K− ⊂ V +
N ,

where for ε ∈ {±}, N ε = SpanZ{v ∈ L(4; e, ε) | 〈v, L(4; e)〉 ∈ 2Z}, Kε is a lattice of full

rank in (〈N ε〉C)⊥ ∩ (Hε
1 ⊕ Hε

2) isomorphic to an orthogonal direct sum of copies of 2A1,

and N = N+ ⊕K+ ⊕N− ⊕K−. Since N is generated by norm 4 and 8 vectors, and the

inner products of the generator belong to 2Z, the lattice N/
√
2 is even. By Proposition

1.8, there is a sublattice U of N isomorphic to
√
2A1 or

√
2E8 such that e ∈ V +

U . It

follows from K+(4) = K−(4) = ∅ that N(4) = N+(4) ∪ N−(4) ⊂ L. Since
√
2A1 and√

2E8 are spanned by norm 4 vectors as lattices, we have U ⊂ L. Hence V +
U is a subVOA

of V +
L . �

As an application of the main theorem, we count the total number of Ising vectors in

V +
L for even lattice L without roots.

Let us describe Ising vectors in V +
L . The Ising vector ω±(α) associated to α ∈ L(4) was

described in (1.3) as follows:

ω±(α) =
1

16
α(−1)2 · 1± 1

4
xα.

Let E be an even lattice isomorphic to
√
2E8 and {ui | 1 ≤ i ≤ 8} an orthonormal

basis of C ⊗Z E. We consider the trivial 2-cocycle of C{E} for VE. Then for ϕ ∈
Hom(E,Z/2Z)(∼= (Z/2Z)8)

ω(E,ϕ) =
1

32

8
∑

i=1

ui(−1)2 · 1+
1

32

∑

{±α}⊂E(4)

(−1)ϕ(α)xα

is an Ising vector in V +
E ([DLMN98, Gr98]). Since E(4) spans E as a lattice, ω(E,ϕ) =

ω(E,ϕ′) if and only if ϕ = ϕ′. Hence V +
E has 256 Ising vectors of form ω(E,ϕ). Thus

V +√
2A1

and V +√
2E8

has exactly 2 and 496 Ising vectors, respectively ([LSY07, Proposition

4.2 and 4.3]).

Corollary 2.4. Let L be an even lattice without roots. Then the number of Ising vectors

in V +
L is given by

|L(4)|+ 256× |{U ⊂ L | U ∼=
√
2E8}|.

Proof. Setm = |L(4)|+256×|{E ⊂ L | E ∼=
√
2E8}|. Theorem 2.3 shows that the number

of Ising vectors in V +
L is less than or equal to m. Let us show that there are exactly m

7



Ising vectors in V +
L , that is, the Ising vectors ω±(α) and ω(E,ϕ) are distinct. By Lemma

1.5 (1), ωε(α) = ωδ(β) if and only if α = β and ε = δ. Moreover, ωε(α) 6= ω(E,ϕ) for all

α ∈ L(4), L ⊃ E ∼=
√
2E8 and ϕ ∈ Hom(E,Z/2Z).

Let E1, E2 be sublattices of L such that E1
∼= E2

∼=
√
2E8. Let ϕi ∈ Hom(Ei,Z/2Z),

i = 1, 2. Then it follows from Lemma 1.5 (1) and 〈Ei(4)〉Z = Ei that ω(E1, ϕ1) = ω(E2, ϕ2)

if and only if E1 = E2 and ϕ1 = ϕ2. Therefore, there are exactlym Ising vectors in V +
L . �
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