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1 Introduction

A remarkable correspondence between a four dimensional N = 2 superconformal field
theory (SCFT) and a two dimensional vertex operator algebra (VOA) is found in [1].
which provides a promising organizing principle for the whole landscape of N = 2 theories
(see [2–22] for some further developments). Once a 4d/2d pair is found, one can use the 2d
theory to learn 4d theory and vice versa. For example, one can compute the Schur index
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of 4d SCFT by calculating the vacuum character of 2d VOA which is often much easier to
work out, meanwhile 4d result also motivates the study of certain 2d VOAs which received
little attention before [23].

If our 4d SCFTs can be enginnered from string/M theory, it is possible to gain more
insights about 4d/2d pair. In the past few years, People have found a large class of 4d
N = 2 SCFTs by putting 6d (2, 0) theory on a Riemann surface with various defects [24–
28], so we should have a map between such 6d configuration and a 2d VOA, which is
schematically depicted in figure 1. The 2d VOA for the theory defined using only regular
punctures was studied in [2, 3, 29]. The most important step is to understand the VOA for
the theory defined by three full punctures (maximal flavor symmetry), since the general
cases can be found from following two correspondence between operations in 4d theory and
operations in 2d VOAs:

• On the 4d side one can reduce the full puncture to a generic puncture labeled by a
nilpotent orbit f . The 2d counterpart of such operation corresponds to the quantum
Drinfeld-Sokolov (qDS) reduction of the original VOA [2], as sketched in figure 2.

• If a theory is formed by conformally gauging various matters together, the VOA is
formed by performing cosets on those VOAs [1, 2] as in figure 3.

Things become more interesting and complicated if we consider Argyres-Douglas (AD)
theories which are engineered using one irregular singularity Φ and one regular singularity
f on a sphere as in figure 1. The correspondence between 2d VOAs and certain AD
theories were discussed in [5, 10, 11, 20, 28, 30–39]. More generally it was conjectured
in [11, 28, 35] that if there is no mass parameter associated with the irregular singularity,
the corresponding VOA is just the vacuum module of a W algebra denoted by W k′(g, f)
which is obtained through the quantum Hamiltonian reduction from the vacuum ĝ-module
of level k′ [40], where k′ is determined by the data Φ. Again, the choice of the generic
regular puncture f determines the qDS reduction type.

There remains the question on determining the VOA for remaining cases, and the main
purpose of this paper is to partially solve this problem by using following two facts:

• Irregular singularities with mass deformations often have exact marginal deforma-
tions and their weakly coupled gauge theory descriptions are found in [41–43]. They
are described by gauging AD matters with at least two types of non-abelian flavor
symmetries.1 Therefore once we find the VOA for such AD matter, the VOA of the
full theory can be found by the coset construction.

• A crucial observation for this paper is that all AD matters with two non-abelian flavor
symmetries studied in [42, 43] can be engineered by a different realization whose
VOAs are known as certain W algebra studied in [11, 28, 35]. The W algebra takes
the form W k′(g, [qm, 1s]) with k′ depends on parameter (q,m, s), see the summary in
section 3.2.5.

1One can get more non-abelian flavor symmetries from closing regular puncture, but gauge theory
description found in [42] has to use the non-abelian flavor symmetry arising from irregular singularity.
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g

f

Φ

VOA(g, Φ, f )

Figure 1. A mapping of a 6d (2, 0) configuration to a 2d VOA, here g is a simple Lie algebra, Φ
is an irregular singularity, and f represents a regular singularity.

4d

full

closing puncture

generic f

2d VOA1
DS reduction VOA2

Figure 2. Closing puncture in Class S construction corresponds to qDS reduction of 2d VOA.

4d GT1 T2

2d
V1 ⊕ V2
g−2h∨

Vk1(G) ⊂ V1, Vk2(G) ⊂ V2
k1 + k2 = −2h∨

Figure 3. Four dimensional conformal gauging is interpreted as cosets of two dimensional VOAs.
T1 and T2 are four dimensional matter with non-abelian flavor symmetry G, and one gauge them
to get a new conformal field theory with exact marginal deformation. Here V1 and V2 are VOAs for
matter T1 and T2, and each of them has an affine vertex subalgebra Vki

(G). g is the Lie algebra of
G. Since we are taking the diagonal coset, the generators Ja

diag of g−2h∨ is the sum Ja
diag = Ja

1 +Ja
2

where Ja
1,2 are generators of Vk1,2(G) respectively.
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=

=

Φ1 Φ2

f1 f2

= =

g1 g2

VOA(g,Φ1, f1) VOA(g,Φ2, f2)

Figure 4. Equivalence of 6d (2, 0) configuration implies the equivalence of 2d VOAs.

There are several new interesting features about VOAs of AD matters studied in this paper:

a) The VOA has an affine VOA Vk1(g1)⊕ Vk2(g2) as its subalgebra, where Vk(g) is the
affine Kac-Moody (AKM) vertex algebra2 of Lie algebra g with level k. This affine
VOA has the same central charge as the W algebra and therefore we found a large
number of new possible conformal embeddings of VOAs.

b) The simple fact that a theory can be engineered in various ways can often tell us
interesting properties about VOAs, see figure 4. For instance, we can derive new
level-rank type duality.

c) S-duality of 4d theory implies the equivalence between different cosets constructions
of a single VOA.

Once VOAs for AD matters are known, we are able to write down VOAs for more general
theories engineered from M5 branes. For example, the VOA for (AN−1, Ak−1) theory
with arbitrary N and k is found by using its weakly coupled gauge theory descriptions in
section 5.1.

This paper is organized as the following. Section 2 reviews known results about the
mapping between AD theories engineered from M5 branes and VOAs. Section 3 studies
VOAs corresponding to AD matters with two distinct non-abelian flavor symmetries. Sec-
tion 4 focuses on the associated variety of the VOA for a given AD matter, which determines
the Higgs branch chiral ring of the theory. Section 5 describes weakly coupled descriptions
of AD theories and the coset construction of the corresponding VOA. Section 6 discusses
conformal embeddings and VOAs for most general AD theories. Finally, a summary is
given in section 7.

2By affine Kac-Moody and W algebra, we mean the irreducible vertex operator algebra constructed from
the vacua module of AKM and W algebra.
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2 Known results

A four dimensional N = 2 SCFT has a bosonic symmetry group SO(2, 4) × SU(2)R ×
U(1)R × GF , where SO(2, 4) is the four dimensional conformal group, SU(2)R × U(1)R
is the R symmetry group which exists for every N = 2 SCFT, and GF is the flavor
symmetry group which might be absent for some theories. The representation theory
of 4d N = 2 superconformal algebra is studied in [44], in which short representations
(where some of states in the representation are annihilated by a fraction of supercharges)
were completely classified. Important half-BPS operators include primary operators of
multiplets Er and B̂R.

The moduli space of vacua of a 4d N = 2 SCFT is extremely rich. It consists of
a Coulomb branch, whose low energy effective theory involves abelian gauge theory in
general. The Coulomb branch is parameterized by expectation values of primary operators
of Er multiplets, and the low energy effective theory is described by a Seiberg-Witten
geometry [45, 46]. The set of rational numbers [r1, . . . , rs] of U(1)r charges of Er (unitarity
implies that ri > 1) is an important set associated to a 4d N = 2 SCFT. The U(1)r
symmetry acts non-trivially on the Coulomb branch while SU(2)R × GF symmetry acts
trivially.

Some theories also have a Higgs branch where the gauge group is completely broken
in general should the SCFT has a gauge theory description. The Higgs branch, being a
conical hyperkhaler manifold, is parameterized by expectation values of primary operators
of B̂R multiplets. One of important questions about the Higgs branch is to determine the
affine chiral ring of the cone. The SU(2)R × GF symmetry acts non-trivially on Higgs
branch, while U(1)R symmetry acts trivially.

Besides the Coulomb branch spectrum (just a set of rational numbers ri > 1) and the
Higgs branch chiral ring, one would also like to determine three interesting quantities of a
4d N = 2 SCFT: central charges a4d and c4d which is defined using the energy-momentum
tensor, and the flavor central charge kG.

There is an interesting set of short multiplets called Schur sector [47] which consists of
Higgs branch operators B̂R, energy momentum tensors, and etc. Moreover, one can define
a Schur index which counts those operators. It was proposed in [1] that one can get a 2d
VOA from the Schur sector of a 4d N = 2 SCFT, and the basic 4d/2d correspondence
used in current paper is [1]:

• There is an AKM subalgebra (Vk2d
(g)) in 2d VOA, where g is the Lie algebra of four

dimensional flavor symmetry GF .

• The 2d central charge c2d and the level of AKM algebra k2d are related to the 4d
central charge c4d and the flavor central charge kF as

c2d = −12c4d, k2d = −kF .3 (2.1)

• The (normalized) vacuum character of 2d VOA is the 4d Schur index I(q).
3Our normalization of kF is half of that of [1, 2].
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Many 4d/2d pairs are found in [2, 3, 10, 11, 20, 28–39]. Various interesting properties of 4d
theory using 2d VOA are studied in [4, 8, 9, 11, 13, 15, 30–32, 48–57]. See also [19, 56, 58] for
VOAs corresponding to 6d (2, 0) theory on a four manifold. Moreover VOAs corresponding
to three dimensional N = 4 theory are discussed in [59, 60].

VOAs arise from study of the chiral part of two dimensional conformal field theories. A
general definition has been given by mathematicians [61], but it seems difficult to construct
them abstractly. On the other hand, a VOA is often defined as an irreducible (which
is also called simple) vacuum module of a particular algebra, which seems much more
tractable. The simplest case is the Virasoro algebra whose elements are the modes of
energy momentum tensor T (z) = ∑

Lnz
−n−2:

[Ln, Lm] = (n−m)Ln+m + c

12n(n2 − 1)δn+m,0. (2.2)

Another important algebra is the AKM algebra associated with a simple Lie algebra g,

[Jan , Jbm] = ifabc J
c
n+m + knδabδn+m,0, (2.3)

with fabc the structure constant of g. One can construct an energy-momentum tensor using
the Sugawara construction, and the simple vacuum module is indeed an VOA [62]. The
representation theory of above two algebras has been studied thoroughly in the literature
(see [63] and many others).

Finally, one can have intricated algebras built from a set of higher spin fields
(Wd1 , . . . ,Wdi

), which are called W algebras [64]. The full algebra content and its rep-
resentation theory of a W algebra is very complicated, however, if a W algebra can be
derived from the qDS reduction of an AKM algebra [40], one can actually derive lots
of important information of this W algebra from the representation theory of the AKM
algebra.

In general it is difficult to work out the full Schur sector of a four dimensional N = 2
SCFT. However, using a surprising fact that almost all the known 2d VOA for the above
4d/2d mapping involves the W algebra derived from qDS reduction [65], one can hope that
a lot can be learned about 4d theories by using existing knowledge of 2d VOAs.

2.1 AD theories correspond to W k′(g, f) algebras

One can engineer a large class of four dimensional N = 2 SCFTs by starting with a 6d
(2, 0) theory of type j = ADE on a sphere with an irregular singularity and a regular
singularity [24–28].4 The Coulomb branch is captured by a Hitchin system with singular
boundary conditions near the singularity. The Higgs field of the Hitchin system near the
irregular singularity takes the following form,

Φ = T

z2+ k
b

+ . . . . (2.4)

Here T is determined by a positive principle grading of Lie algebra j [66], and is a regular
semi-simple element of j. k > −b and is an integer. Subsequent terms are chosen such that

4See the appendix A for relations between this construction and other constructions.
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j b Singularity

AN−1 N x2
1 + x2

2 + xN3 + zk = 0

N − 1 x2
1 + x2

2 + xN3 + x3z
k = 0

DN 2N − 2 x2
1 + xN−1

2 + x2x
2
3 + zk = 0

N x2
1 + xN−1

2 + x2x
2
3 + zkx3 = 0

E6 12 x2
1 + x3

2 + x4
3 + zk = 0

9 x2
1 + x3

2 + x4
3 + zkx3 = 0

8 x2
1 + x3

2 + x4
3 + zkx2 = 0

E7 18 x2
1 + x3

2 + x2x
3
3 + zk = 0

14 x2
1 + x3

2 + x2x
3
3 + zkx3 = 0

E8 30 x2
1 + x3

2 + x5
3 + zk = 0

24 x2
1 + x3

2 + x5
3 + zkx3 = 0

20 x2
1 + x3

2 + x5
3 + zkx2 = 0

Table 1. Three-fold isolated quasihomogenous singularities of cDV type corresponding to the
J (b)[k] irregular punctures of the regular-semisimple type in [27]. These 3d singularity is very
useful in extracting the Coulomb branch spectrum, see [67].

they are compatible with the leading order term (essentially the grading determines the
choice of these terms). We call them J (b)[k] type irregular puncture. Theories constructed
using only above irregular singularity can also be engineered using a three dimensional
singularity in type IIB string theory as summarized in table 1 [67].

One can add another regular singularity which is labeled by a nilpotent orbit f of j

(We use Nahm labels such that the trivial orbit corresponding to regular puncture with
maximal flavor symmetry). A detailed discussion about these defects can be found in [68].
If there is no mass parameter encoded in the irregular singularity Φ (which means that the
z−1 term in Φ is not allowed, and we also assume that singular parts of Φ are diagonalized
near the irregular singularity), the VOA which corresponds to this 4d SCFT is the vacuum
module of following W algebra5 [11, 35],

W k′(j, f), k′ = −h∨ + b

k + b
. (2.5)

Here h∨ is the dual Coxeter number of j, and the W algebra is defined as the qDS reduction
from the affine VOA [69].

To get non-simply laced flavor groups, we need to consider the outer-automorphism
twist of ADE Lie algebra and its Langlands dual. A systematic study of these AD theories
was performed in [28]. Denoting the twisted Lie algebra of j as g∨ and its Langlands dual as

5We always use the irreducible vacuum module as the VOA corresponding to 4d theory.
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j A2N A2N−1 DN+1 E6 D4

Outer-automorphism o Z2 Z2 Z2 Z2 Z3

Invariant subalgebra g∨ BN CN BN F4 G2

Flavor symmetry g C
(1)
N BN C

(2)
N F4 G2

Table 2. Outer-automorphisms of simple Lie algebras j, its invariant subalgebra g∨ and flavor
symmetry g from the Langlands dual of g∨.

g, outer-automorphisms and twisted algebras of j are summarized in table 2. The irregular
singularity of regular semi-simple type is also classified as in table 3 with the following form,

Φ = T t

z2+ k
b

+ . . . (2.6)

Here T t is an element of Lie algebra g∨ or other parts of the decomposition of j under outer
automorphism. k > −b, and the novel thing is that k could take half-integer value or in
thirds (g = G2). One can also represent those irregular singularities by 3-fold singularities
as in table 3.

We could again add a twisted regular puncture labeled also by a nilpotent orbit f of g.
If there is no mass parameter in the irregular singularity, the corresponding VOA is given
by following W algebra [28],

W k′(g, f), k′ = −h∨ + 1
n

b

k + b
, (2.7)

where h∨ is the dual Coxeter number of g, n is the number listed in table 4, and k is
restricted to the value such that no mass parameter is in the irregular singularity.

The Seiberg-Witten geometry of these theories are identified as the spectral curve of
the Hitchin system [70].

det(x− Φ) = 0, (2.8)

and one can read off the Coulomb branch spectrum from an associated Newton polygon [26–
28], which is also reviewed in the appendix B.

2.2 AD theories correspond to Bp+1(g) and Wp+1(g) algebras

Consider the following irregular singularity of j = ADE (2, 0) theory,

Φ = T

z2+p + . . . (2.9)

Notice that there are l (the rank of j) mass parameters in this singularity. We add a trivial
regular singularity (f is regular nilpotent orbit), then these theories can be engineered by
following three-fold singulariities,

fADE(x, y, z) + wph
∨ = 0, (2.10)
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j with twist bt SW geometry at SCFT point ∆[z]

A2N/Z2 4N + 2 x2
1 + x2

2 + x2N+1 + zk+ 1
2 = 0 4N+2

4N+2k+3

2N x2
1 + x2

2 + x2N+1 + xzk = 0 2N
k+2N

A2N−1/Z2 4N − 2 x2
1 + x2

2 + x2N + xzk+ 1
2 = 0 4N−2

4N+2k−1

2N x2
1 + x2

2 + x2N + zk = 0 2N
2N+k

DN+1/Z2 2N + 2 x2
1 + xN2 + x2x

2
3 + x3z

k+ 1
2 = 0 2N+2

2k+2N+3

2N x2
1 + xN2 + x2x

2
3 + zk = 0 2N

k+2N

D4/Z3 12 x2
1 + x3

2 + x2x
2
3 + x3z

k± 1
3 = 0 12

12+3k±1

6 x2
1 + x3

2 + x2x
2
3 + zk = 0 6

6+k

E6/Z2 18 x2
1 + x3

2 + x4
3 + x3z

k+ 1
2 = 0 18

18+2k+1

12 x2
1 + x3

2 + x4
3 + zk = 0 12

12+k

8 x2
1 + x3

2 + x4
3 + x2z

k = 0 8
12+k

Table 3. Seiberg-Witten geometry of twisted theories at the SCFT point.

dimension h h∨ n

AN−1 N2 − 1 N N 1
BN (2N + 1)N 2N 2N − 1 2

C
(1)
N (2N + 1)N 2N N + 1 4

C
(2)
N (2N + 1)N 2N N + 1 2

DN N(2N − 1) 2N − 2 2N − 2 1
E6 78 12 12 1
E7 133 18 18 1
E8 248 30 30 1
F4 52 12 9 2
G2 14 6 4 3

Table 4. Lie algebra data. h is the Coexter number and h∨ is the dual Coexter number.

where h∨ is the dual Coxeter number of j, and fADE(x, y, z) is the famous two dimensional
ADE singularity. The 4d central charge is computed using following formula [71],

c4d = µαmax
12 + r

6 , (2.11)

where αmax is the maximal scaling dimension of Coulomb branch spectrum, r is the rank
of Coulomb branch, and µ = 2r + f0 with f0 the number of mass parameters. Using the
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result found in [35], we have,

µ = l(ph∨ − 1), αmax = ph∨

p+ 1 , f0 = l, (2.12)

then the central charge takes following form,

c4d(j, p) = 1
12

(
−2l + (h∨ + 1)lh∨p2

p+ 1

)
. (2.13)

When j = AN−1, it was propsed in [20] that the corresponding VOA is the Bp+1(AN−1)
algebra constructed in [72]. For general j = ADE, the central charge of Bp+1(j) algebra is,

c2d(Bp+1(j)) = 2l + h∨ dim(j)
(

2− (p+ 1)− 1
p+ 1

)
. (2.14)

One finds that c2d(Bp+1(j)) = −12c4d(j, p) for general j,6 therefore we conjecture that the
VOA of above 4d SCFT is given by the Bp+1(j) algebra.

We could also consider twisted AD theories with the following Higgs field,

Φ = T t

z2+p + . . . (2.15)

Using the method proposed in [28], the 4d central charge is,

c4d = 1
12

(
−2l + (h∨l(h∨ + 1))(n(p+ 1)− 1)2

n(p+ 1)

)
. (2.16)

n = 1 for simply-laced cases, and values of n for non simply-laced cases are summarized in
table 4.7 This implies that it should be possible to generalize the construction in [72] to non-
simply laced Lie algebra whose central charge is given by −12c4d with c4d in equation (2.16).

One can also add another full puncture to get a theory with G flavor symmetry whose
flavor central charge is,

kG = h∨ − 1
n(p+ 1) . (2.17)

The central charge for these theories are,

c4d =

(
h∨ − 1

n(p+1)

)
l(h∨ + 1)n(p+ 1)
12 − l

12 . (2.18)

This suggests that there should be a VOA Wp+1(g) with an affine vertex operator sub-
algebra V−kG

(g). Some suggestions on the construction of this class of VOA are given
in [20], and we will give a coset construction in later sections. The qDS reduction of Wp(g)
produces the Bp(g) VOA.

6We used the fact that dim(j) = l(h∨ + 1), here h∨ is the dual Coxeter number and l is the rank of j.
7Notice that n can take two values for CN type Lie algebra.
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3 VOA for AD matter with two non-abelian flavor symmetries

Theories considered in the last section usually carry only one type of non-abelian flavor
symmetries, which is determined by the regular puncture. When the order of the irregular
singularity considered in the last section is integral, one can consider degenerating cases
and could get another type of non-abelian flavor symmetries [26].

It was realized in [42, 43] that besides the theory considered in the last section, we
can get new 4d N = 2 SCFT by considering more general irregular singularities (taking
g = AN−1 for example),

Φ = T

z2+ k
n

(3.1)

with T being the following diagonal matrix,

T = diag

In×n, 0, . . . , 0︸ ︷︷ ︸
N−n

 . (3.2)

Here In×n being a diagonal matrix with eigenvalues (1, w, . . . , wn−1) with w the nth root
of unity. To get a SCFT, coefficients of subsequent terms in the Higgs field have to take
the same form as the leading one. Such irregular singularity carries a flavor symmetry
U(N −n). One can also add an extra regular puncture so that there are two distinct types
of non-abelian flavor symmetries.

The purpose of this section is to find the VOA for the above class of theories when
(k, n) = 1. The key observation is that the same theory can be realized by a different
(2, 0) configuration whose VOA is already found in section 2. We first study the AN−1
case in detail in section 3.1. The same construction is then generalized to other classical
Lie algebras as well.

3.1 AN−1 = slN : SU(N)×U(n1) flavor symmetry

The regular puncture of AN−1 theory is classified by a size N Young tableaux (or the
partition of N), which also gives a nilpotent orbit of the AN−1 Lie algebra. Given a Young
tableaux [hr1

1 , h
r2
2 , . . . , h

rs
s ], the flavor symmetry is,

GF =
(∏

U(ri)
)/

U(1). (3.3)

We are interested in regular punctures with partitions like [mq, 1s], whose 4d flavor sym-
metry is SU(q)× SU(s)×U(1) with flavor central charges,

kSU(s) = m+ s− [z], kSU(q) = s+ qm−m[z], (3.4)

where [z] is the scaling dimension of z coordinate in the spectral curve of A type Hitchin
system.

Now consider the following configuration,

g = sln1+n, Φ = T

z2+ k
n

, f =

1, . . . , 1︸ ︷︷ ︸
n+n1

 = [1n+n1 ], (3.5)
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Figure 5. Equivalence of two different (2, 0) configurations of A type theory.

with k and n coprime. Here T takes the following form T = [In1×n1 , 0, . . . , 0] with In×n
being a diagonal matrix with eigenvalues (1, w, . . . , wn−1) with w being the nth root of
unity. This theory has a U(n1) × SU(n1 + n) flavor symmetry with 4d flavor central
charges [43],8

kSU(n1) = n1 + n

n+ k
, kSU(n1+n) = n1 + n− n

n+ k
. (3.6)

The Newton polygon for this theory is shown on the left of figure 5, from which one can
read the Coulomb branch spectrum using the procedure in the appendix B.

To find its VOA, we would like to find a different realization of this theory whose VOA
is known through results in the last section, which has the following data,

g = sln1(n+k)+n, Φ = T

z
2+ k−n1(n+k)

n1(n+k)+n

, f = [(n+ k − 1)n1 , 1n1+n]. (3.7)

One can show that these two realizations have the same Coulomb branch and flavor sym-
metries. Now we compute 4d flavor central charges of this new realization of the AD
theory (3.7). Notice [z] = n1(n+k)+n

n+k and using the formula (3.4), we have,

kSU(n1+n) = n+ 2n1 −
n1(n+ k) + n

n+ k
= n+ n1 −

n

n+ k
,

kSU(n1) = n1(n+ k) + n− (n+ k − 1)n1(n+ k) + n

n+ k
= n1 + n

n+ k
,

(3.8)

8We ignore the subscript 2d and 4d when apparenat.
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which is exactly the same as flavor central charges (equation (3.6)) of the previous descrip-
tion (3.5). Therefore, we have compelling reasons to believe that (3.5) and (3.7) give the
same AD theory and they correspond to the same 2d VOA.

The later realization (3.7) is just the AD theory discussed in 2.1. According to equa-
tion (2.7), the corresponding VOA is the following W algebra,

VOAA = W−n1(n+k)−n+ n1(n+k)+n

n+k (sln1(n+k)+n, [(n+ k − 1)n1 , 1n1+n]) . (3.9)

Using the central charge formula (C.15) in the appendix C, the central charge of VOAA is

c(VOAA) = −
(
n2 − 1

)
(k + n− 1)− n1(n+ n1)(3k + 3n− 2). (3.10)

Also by the 4d/2d correspondence, there is an affine u(1) ⊕ V−(n1+ n
n+k )(sun1) ⊕

V−(n+n1)+ n
n+k

(sun+n1) subalgebra within VOAA.

Example. Let us look at the example in figure 5. For the left Newton polygon, we
have n1 = 2, n = 2, k = 3. Using the formula (B.5), we have following Coulomb branch
spectrum

[
8
5 ,

6
5 ,

13
5 ,

11
5 ,

9
5 ,

7
5 ,

18
5 ,

16
5 ,

14
5 ,

12
5

]
. For the right Newton polygon, we have the data

h(l) = [0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4], and we have n′1 = 0, n′ = 12, k′ = −7. Equation (B.6)
gives the spectrum

[
8
5 ,

13
5 ,

18
5 ,

6
5 ,

11
5 ,

16
5 ,

9
5 ,

14
5 ,

7
5 ,

12
5

]
. One can see that two Coulomb branch

spectra match, although they are encoded in quite different ways.

3.1.1 New level-rank dualitys

Now consider the theory with f being a regular nilpotent orbit (hence no flavor symmetry),
and the irregular singularity,

g = sln1+n, Φ = T

z2+ k
n

, f = [n1 + n]. (3.11)

Again, we take n and k to be coprime. This theory has a U(n1) flavor symmetry. Using
the above result (equation (3.9)) for f being a full puncture and the fact that closing of a
puncture is equivalent to qDS, its VOA is

W−n1(n+k)−n+ n1(n+k)+n

n+k (sln1(n+k)+n, [(n+ k − 1)n1 , n+ n1]). (3.12)

Here we take k > n1. The same theory can be realized by the following configuration,

g = slk, Φ = T

z2+ n
k

, f = [k − n1, 1n1 ]. (3.13)

Using the correspondence (2.7) in section 2.1, the corresponding VOA is then

W−k+ k
n+k (slk, [k − n1, 1n1 ]). (3.14)

Therefore, we find the following equivalence of two 2d VOAs from different realizations of
the same 4d AD theories,

W−n1(n+k)−n+ n1(n+k)+n

n+k (sln1(n+k)+n, [(n+ k − 1)n1 , n+ n1])

= W−k+ k
n+k (slk, [k − n1, 1n1 ]).

(3.15)

We call this the level-rank duality as the rank and the level are sort of exchanged for these
two W algebras.
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k = 3

n = 5

=
k = 5

n = 3

Figure 6. Level rank duality example. The Coulomb branch spectrum of two configurations are
the same. Notice that the left hand side uses 6d A4 (2, 0) theory while the right hand side uses 6d
A2 (2, 0) theory.

Example. Taking n1 = 0, we have the following equivalence of VOAs:

W−n+ n
n+k (sln, [n]) = W−k+ k

n+k (slk, [k]). (3.16)

This is the familiar level-rank duality discovered in [73]. See figure 6 for an illustration
from the four dimensional theory point of view.

The above level-rank duality can be further generalized as follows. Consider two con-
figurations,

A : g = sln1+n, Φ = T1

z2+ k
n

, f = [n+ n1 − n2, 1n2 ],

B : g = sln2+k, Φ = T2

z2+ n
k

, f = [k + n2 − n1, 1n1 ].
(3.17)

Choose n+n1−n2 > 1, k+n2−n1 > 1 and T1 =diag(In1×n1 , 0n×n), T2 =diag(In2×n2 , 0k×k).
These two configurations give the same Coulomb branch spectrum, therefore we conjecture
that they give the same 4d theory. The manifest flavor symmetry is U(n1) × U(n2) with
following flavor central charges,

kSU(n1) = n1 + n

n+ k
, kSU(n2) = n2 + k

n+ k
. (3.18)

The two seemingly different VOAs should be the same, so we have following (conjectured)
equivalence,

W−n1(n+k)−n+ n1(n+k)+n

n+k
(
sln1(n+k)+n, [(n+ k − 1)n1 , n+ n1 − n2, 1n2 ]

)
=

W−n2(n+k)−k+ n2(n+k)+k

n+k
(
sln2(n+k)+k, [(n+ k − 1)n2 , k + n2 − n1, 1n1 ]

)
.

(3.19)

An example is illustrated in figure 7.
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n1

k

n
=

1 2 3

4

5

6

7

8

n2

n

k

Figure 7. An example of the generalized level rank duality from Newton polygon of four dimen-
sional N = 2 theory. One can check that these two configuraitons give the same Coulomb branch
spectrum.

3.1.2 Conformal embedding in W algebra

Conformal embedding is defined as the following [74]. Let V be a vertex algebra with a
Virasoro (= conformal) vector wV and let W be a vertex subalgebra of V endowed with a
Virasoro vector wW . The embedding W ⊂ V is called conformal if wW = wV . A necessary
condition for conformal embedding is that cV = cW .

For our W algebra VOAA defined in equation (3.9), there is an affine vertex operator
subalgebra u(1) ⊕ V−(n1+ n

n+k )(sln1) ⊕ V−(n+n1)+ n
n+k

(sln+n1). It is interesting to note that
the central charge of VOAA is equal to the central charge of this affine vertex operator
subalgebra. So the necessary condition for conformal embedding is achieved, and it is
interesting to check whether the following embedding,

u(1)⊕ V−(n1+ n
n+k )(sln1)⊕ V−(n+n1)+ n

n+k
(sln+n1) ⊂

W−n1(n+k)−n+ n1(n+k)+n

n+k (sln1(n+k)+n, [(n+ k − 1)n1 , 1n1+n])
(3.20)

is indeed the conformal embedding (see [52] for physical discussions).

Example. Taking n1 = 1 and n+ k − 1 = 2, we have the following embedding:

U(1)⊕ V− 2n
3 +1(su(n+ 1)) ⊂W−

2(n+3)
3 (sln+3, [2, 1n+1]), (3.21)

which is the conformal embedding studied in [74].
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3.1.3 Collapsing levels and decoupling of flavor symmetry

We have found VOAs of some AD matters with two distinct non-abelian flavor symmetries
by finding an alternative (2, 0) construction.9 Notice that the above construction does
not give a new realization for theories with just a SU(n) flavor symmetry arising only from
regular singularity. We would like to find a different realization for those theories too. Such
realization is not very good for 4d theory as there appears to be more flavor symmetries
which will decouple in the IR, but they do have interesting implications for VOAs.

The basic idea is the following. Start with a theory engineered by the following con-
figuration,

g = sln, Φ = T

z2+ k
n

, f = [1n]. (3.22)

We take (k, n) = 1, and T being the principle type (so no mass term is allowed in the
irregular singularity) so that the VOA is the affine vertex operator algebra

V k′(sln), k′ = −n+ n

k + n
. (3.23)

Now we would like to find another realization whose assosiated VOA is known by the result
of section 2 too, so it should take the following form,

g = slN , Φ = T

z2+−N+n+k
N

, f = [qm, 1n]. (3.24)

Naively, this configuration has flavor symmetry SU(n) × U(m). The flavor central charge
for SU(n) flavor group is n+m− N

n+k . The necessary condition for the equivalence is that
the flavor central charge for SU(n) group should be the same,

n− n

n+ k
= n+m− N

n+ k
, (3.25)

therefore we find N = m(n + k) + k, so q = (n + k). The flavor central charge of SU(m)
group is

m(n+ k) + n− (n+ k)m(n+ k) + n

n+ k
= 0. (3.26)

Physically, we interpret that this result implies that the U(m) flavor symmetry is decoupled
in the IR 4d SCFT. These two configuration defines the same 4d SCFT in the IR (One
can check that they give the same Coulomb branch spectrum), and we have the following
equivalence of VOAs,

V −n+ n
k+n (sln) = W−m(n+k)−n+ m(n+k)+n

n+k (slm(n+k)+n, [(n+ k)m, 1n]). (3.27)

Mathematically, this means that the W algebra collapses to its affine subalgebra [74, 75].
We could generalize the above collapsing story as follows. Consider more general theory

engineered by following data,

g = sln1+n, Φ = T

z2+ k
n

, f = [1n1+n]. (3.28)

9This part is motivated by a question by T. Arakawa.
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Again T = diag(In×n, 0n1). This theory has flavor symmetry U(n1)×SU(n+n1). We found
that its VOA is a W algebra given by the nilpotent orbit [(n+ k − 1)n1 , 1n+n1 ]. However,
the theory can be engineered by the following configuration as well,

g = sl(m+n1)(n+k)+n, Φ = T

z2+ m
N

, f = [(n+ k)m, (n+ k − 1)n1 , 1n+n1 ]. (3.29)

We have N = (m+n1)(n+k)+n and N +m = n+k. The VOA for above configuration is

W k′(slN , [(n+ k)m, (n+ k − 1)n1 , 1n+n1 ]), k′ = −N + N

n+ k
. (3.30)

This configuration has the naive flavor symmetry U(m)×U(n1)× SU(n+ n1). The flavor
central charge for the U(m) flavor group is zero, and therefore is decoupled in the IR. The
above W algebra (3.30) is therefore collapsed to VOAA defined in (3.9).

3.2 Classical Lie algebra

We now discuss how to generaize the above construction to other Lie algebras. The idea
is similar: we consider AD matters engineered from one 6d realization whose VOA is not
known, then we find an equivalent realization whose VOA can be read from results in
section 2.

3.2.1 DN = so2N : SO(2N)× Sp(n1) flavor symmetry

We start with AD theories engineered from 6d DN (2, 0) theory. The regular puncture
of DN theory is classified by nilpotent orbits of so2N Lie algebra and is labeled by a size
2N Young tableaux whose even parts has even multiplicities. Given a Young tableau
[rh1

1 , rh2
2 , . . .], the flavor symmetry is

GF =
∏

hi even
Sp(ri)×

∏
hi odd

SO(ri). (3.31)

Given the puncture [mq, 1s] with (q,m, s) all even, the flavor symmetry is Sp(q) × SO(s)
whose central charges are

kSO(s) = (s+ q − 2)− [z], kSp(q) = s+mq −m[z]
2 . (3.32)

Here [z] is the scaling dimension of z coordinate in the spectral curve of DN type.
Now consider following configuration,

g = so(n+ n1 + 2), Φ = T

z2+ k
n

, f = [1n+n1+2], (3.33)

with (k, n) = 1, and T takes a specific form, see [43]. We choose n to be even and consider
the irregular singularity with which no flavor symmetry is associated. This also implies
that n+k is odd. See figure 8 for its corresponding Newton polygon. The flavor symmetry
is Sp(n1)× SO(n+ n1 + 2). The flavor central charges of them are

kSO(2N) = n+ n1 −
n

n+ k
, kSp(n1) = n1 + 2

2 + n

2(n+ k) . (3.34)
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The same theory can be engineered by following configuration,

g = son1(n+k)+n+2, Φ = T

z2+ m
2N−2

, f = [(n+ k − 1)n1 , 1n+n1+2]. (3.35)

We have 2N = n1(n+k)+n+2 and 2N −2+m = n+k. It has the same Coulomb branch
with realization (3.33). Using [z] = 2N−2

n+k and equation (3.32), flavor central charges of the
SO(n+ n1 + 2)× Sp(n1) flavor groups are

kSO(n+n1+2) = n+ 2n1 −
n1(n+ k) + n

n+ k
= n+ n1 −

n

n+ k
,

kSp(n1) = 1
2

[
n1(n+ k) + n+ 2− (n+ k − 1)n1(n+ k) + n

n+ k

]
= 1

2

(
n1 + 2 + n

n+ k

)
,

(3.36)

which is exactly the result found in other description (3.33) (cf. equation (3.34)).
The VOA for the realization (3.35) (See section 2) is

VOAB = W k′(son1(n+k)+n+2, [(n+ k − 1)n1 , 1n+n1+2]),

k′ = −[n1(n+ k) + n] + n1(n+ k) + n

n+ k
.

(3.37)

Following equation (C.20), the central charge of VOAB is

c(V OAB) = −1
2(n+ 1)(n+ 2)(n+ k − 1)− 1

2n1(n+ n1 + 2)(3k + 3n− 2). (3.38)

It is then the corresponding VOA of AD theory (3.33).
In previous discussions, we require n to be even. We can also consider the case where

n is odd. The AD matter with two non-abelian flavor symmetries are given by following
configuration,

g = so2n+n1 , Φ = T

z2+ 2k
2n

, f = [12n+n1 ]. (3.39)

Here n1 is even and n is odd, and T = diag(I2n×2n, 0n1), see [43] for the specific
form of diagonal matrix I2n×2n. We also require (n, k) = 1. The flavor symmetry is
SO(n1) × SO(2n + n1) × SO(2). Unlike the previous case, there is an extra SO(2) flavor
symmetry besides two simple flavor groups. The same theory can be described by following
configuration,

g = so2N , Φ = T

z2+ 2k′
2N

, f = [(2n+ 2k − 1)n1 , 12n+n1]. (3.40)

We have N = n1(n+ k − 1) + n+ n1 and N + k′ = n+ k, hence

k′ = k − (k + n)n1 . (3.41)

Here N is odd, and there is a SO(2) flavor symmetry in irregular singularity. Unfortunately,
we do not know the VOA for this configuration yet.
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Figure 8. Newton polygon for D-type and twisted D-type theories: there is a Coulomb branch
parameter associated with each black lattice point of the Newton polygon. Unlike the A type case,
the lattice points on odd x (horizontal) axis is deleted. The difference for untwisted and twisted
case is that on x = 0 axis: even points are kept for D type theory while odd points are kept for
twisted D type theory.

3.2.2 Twisted DN = so2N theory: Sp(2N − 2)× SO(n1) flavor symmetry

The regular puncture of twisted DN theory is classified by nilpotent orbits of sp2N−2
Lie algebra and is labeled by a 2N − 2 size Young tableaux whose odd parts has even
multiplicities. Given a Young tableau [rh1

1 , rh2
2 , . . .], the flavor symmetry is

GF =
∏

hi even
SO(ri)×

∏
hi odd

Sp(ri). (3.42)

Given the partition [mq, 1s] with (q,m, s) even, the flavor groups are SO(q) × Sp(s) with
following central charge:

kSp(s) = (s+ q + 2)
2 − [z]

2 , kSO(q) = s+ qm−m[z]. (3.43)

here [z] is the scaling dimension of the coordinate z in spectral curve of twisted DN theory.
Next consider the twisted theory with the following data,

g = so(n+ n1)z2 , Φ = T t

z2+ k
n

, f = [1n+n1−2]. (3.44)

We take (n, k) = 1 and n is even so that there is no flavor symmetry associated with the
irregular part (this implies that n+ k is odd), and figure 8 illustrates its Newton polygon.
The flavor symmetry is SO(n1)× Sp(n+ n1 − 2), and flavor central charges are

kSp(n+n1−2) = n+ n1
2 − n

2(n+ k) , kSO(n1) = n1 − 2 + n

n+ k
. (3.45)

To find its VOA, we realize that there is another equivalent description:

g = (son1(n+k)+n)z2 , Φ = T t

z2+ m
2N

, f = [(n+ k − 1)n1 , 1n+n1−2], (3.46)

– 19 –



J
H
E
P
0
4
(
2
0
2
1
)
0
7
6

and we have 2N = n1(n+ k) +n and 2N +m = n+ k. The flavor central charge for flavor
groups are computed by using the fact [z] = 2N

n+k and equation (3.43),

kSp(n+n1−2) = n+ 2n1
2 − n1(n+ k) + n

2(n+ k) = n+ n1 −
n

2(n+ k) ,

kSO(n1) = n1(n+ k) + n− 2− (n+ k − 1)n1(n+ k) + n

n+ k
= n1 − 2 + n

n+ k
.

(3.47)

which are the same as results from other description, see (3.45). One can also check that the
two configurations have the same Coulomb branch spectrum. Therefore the corresponding
VOA is the W algebra

VOAC = W k′(spn1(n+k)+n−2, [(n+ k − 1)n1 , 1n+n1−2]),

k′ = −n1(n+ k) + n

2 + n1(n+ k) + n

2(n+ k) .
(3.48)

From (C.30) the central charge of VOAC is

c(VOAC) = −1
2(n− 2)(n− 1)(n+ k − 1)− 1

2n1(n+ n1 − 2)(3k + 3n− 2). (3.49)

3.2.3 Twisted sl2N theories: SO(2N + 1)× Sp(n1) flavor symmetry

Let’s now consider twisted sl2N theory from which we can get SO2N+1 flavor symmetry.
The regular puncture is labeled by a Young tableaux with size 2N + 1, and the constraint
is that even parts has even multiplicities. Given a Young tableaux [rh1

1 , rh2
2 , . . .], and the

flavor symmetry is
GF =

∏
hi even

Sp(ri)×
∏

hi odd
SO(ri). (3.50)

We are interested in punctures like [mq, 1s], with m even, and (q, s) odd. The flavor
symmetry is SO(s)× Sp(q) with following central charge:

kSO(s) = s+ q − 2− [z]/2, kSp(q) = s+mq −m[z]/2
2 . (3.51)

Here [z] is the scaling dimension of z coordinate in spectral curve of twisted sl2N type.
The defining data for our theory is,

g = (sln+n1+1)z2 , Φ = T t

z2+ k+1/2
n

, f = [1n+n1+2]. (3.52)

Here n is odd and n1 is even (cf. figure 9). The flavor symmetry is SO(n+n1 + 2)×Sp(n1)
with following flavor central charges,

kSO(n+n1+2) = n+ n1 −
n

2n+ 2k + 1 , kSp(n1) = n1 + 2
2 + n

2(2n+ 2k + 1) . (3.53)

The VOA is found by identifying following equivalent configuration,

g = (sln1(2n+2k+1)+n+1)z2 , Φ = T t

z2+
m+ 1

2
2N−1

, f = [(2n+ 2k)n1 , 1n+n1+2]. (3.54)
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n1 + 1 n

k + 1
2

Figure 9. Newton polygon for twisted sl2N theory. The integral points on x = even axis are kept,
while the half integral points on odd x = odd axis are kept, here x is the horizonal coordinate.

with 2N = n1(2n + 2k + 1) + n + 1 and 2N − 1 + m + 1
2 = n + k + 1

2 . To compute
the flavor central charges for SO(n + n1 + 2) × Sp(n1) flavor symmetry, use the fact that
[z]/2 = n1(2n+2k+1)+n

2n+2k+1 ,

kSo(n+n1+2) = 2n1+n−n1(2n+2k+1)+n
2n+2k+1 = n+n1−

n

2n+2k+1 ,

kSp(n1) = 1
2

[
n1(2n+2k+1)+n+2−(2n+2k)n1(2n+2k+1)+n

2n+2k+1

]
= 1

2

(
n1+2+ n

2n+2k+1

)
,

(3.55)
which are exactly the same as that computed in other description (3.53). One can also
check that the two configurations give the same Coulomb branch spectrum. Hence the
corresponding W algebra is

VOAD = W k′(son1(2n+2k+1)+n+2, [(2n+ 2k)n1 , 1n+n1+2]),

k′ = −(n1(2n+ 2k + 1) + n) + n1(2n+ 2k + 1) + n

2n+ 2k + 1 .
(3.56)

Using equation (C.25), the central charge is

c(VOAD) = −(n+ 1)(n+ 2)(k + n)− 1
2n1(n+ n1 + 2)(6k + 6n+ 1). (3.57)
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3.2.4 Twisted sl2N+1 theories: Sp(2N)× SO(n1 + 1) flavor symmetry

Now consider twisted sl2N+1 theory from which we can also get Sp(2N) flavor symmetry,
but this time we will also get another B type flavor symmetry, which is different from
twisted D type theory. The twisted regular puncture is classified by a Young tableaux
with size 2N . Given a Young tableau [rh1

1 , rh2
2 , . . .], the flavor symmetry is,

GF =
∏

hi even
SO(ri)×

∏
hi odd

Sp(ri). (3.58)

Given the partition [mq, 1s] with (q,m, s) even, the flavor groups are SO(q) × Sp(s) with
following central charge:

kSp(s) = (s+ q + 2)
2 − [z]

4 , kSO(q) = s+ qm−m[z]/2. (3.59)

Here [z] is the scaling dimension of the z coordinate in spectral curve of twisted sl2N+1
theory.

Consider a theory defined by following data, here we use the z2 outerautomorphism of
sln+n1 theory:

g = (sln+n1)z2 , Φ = T

z2+ k+1/2
n

, f t = [1n+n1−1]. (3.60)

Here n is odd and n1 is even (cf. figure 10). The flavor symmetry is Sp(n+n1−1)×SO(n1+1)
and flavor central charges are,

kSp(n+n1−1) = n+ n1 + 1
2 − n

2(2n+ 2k + 1) , kSO(n1+1) = n1 − 1 + n

2n+ 2k + 1 . (3.61)

For above theory, we find following equivalent realization,

g = (so2N )z2 , Φ = T t

z2+ 2m+1
2N

+ . . . , f t = [12N−2]. (3.62)

Here 2N = (n1 + 1)(2n + 2k + 1) + n, and 2N + 2m + 1 = 2n + 2k + 1. Notice that we
found a realization from a different type of twisted theory! The flavor central charges for
Sp(n+ n1 − 1)× SO(n1 + 1) are (here [z]

2 = (n1+1)(2n+2k+1)+n
2(2n+2k+1) )

kSp(n+n1−1) = 1
2(n+2n1+2)−1

2
(n1+1)(2n+2k+1)+n

2n+2k+1 = n+n1+1
2 − n

2(2n+2k+1) ,

kSo(n1+1) = (n1+1)(2n+2k+1)+n−2−(2n+2k)(n1+1)(2n+2k+1)+n
2n+2k+1

= n1−1+ n

2n+2k+1 ,

(3.63)

which agrees with the result shown in (3.61). The corresponding VOA is following W

algebra:

VOAE = W k′(sp(n1+1)(2n+2k+1)+n−2, [(2n+ 2k)n1+1, 1n+n1−1]),

k′ = −(n1 + 1)(2n+ 2k + 1) + n

2 + (n1 + 1)(2n+ 2k + 1) + n

2(2n+ 2k + 1) .
(3.64)
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n1 n

k + 1
2

Figure 10. Newton polygons for twisted Sl2N+1 theory. The integral points on x = odd axis are
kept, while the half integral points on x = even axis are kept, and here x is the horizonal coordinate.

Using equation (C.30), the central charge of VOAE is

c(VOAE) = −1
2(n− 1)[2n2 + 2(k + 1)(n+ 1)− 1]− 1

2n1(n+ n1)(6k + 6n+ 1). (3.65)

3.2.5 Conformal embedding

In previous discussions, we have found W algebras corresponding to AD matters with two
distinct type of non-abelian flavor symmetries. The 4d flavor symmetries give the AKM
subalgebras of 2d VOAs with k2d = −k4d, so we obtain following embeddings of AKM
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algebra into W algebra:

A : u(1)× V−n1− n
n+k

(sun1)× V−n1−n+ n
n+k

(sun1+n) ⊂ VOAA,

B : V−n1+2
2 − n

2(n+k)
(spn1)× V−n−n1+ n

n+k
(son+n1+2) ⊂ VOAB,

C : V−n1+2− n
n+k

(son1)× V−n+n1
2 + n

2(n+k)
(spn+n1−2) ⊂ VOAC ,

D : V−n1+2
2 − n

2(2n+2k+1)
(spn1)× V−n−n1+ n

2n+2k+1
(son+n1+2) ⊂ VOAD,

E : V−n1+1− n
2n+2k+1

(son1+1)× V−n+n1+1
2 + n

2(2n+2k+1)
(spn+n1−1) ⊂ VOAE .

(3.66)

The righthandside are following W algebras:

VOAA : W−h
∨+ h∨

n+k (sln1(n+k)+n, [(n+ k − 1)n1 , 1n+n1 ]),

h∨ = n1(n+ k) + n,

VOAB : W−h
∨+ h∨

n+k (son1(n+k)+n+2, [(n+ k − 1)n1 , 1n+n1+2]),

n even, n1 even, h∨ = n1(n+ k) + n,

VOAC : W−h
∨+ h∨

n+k (spn1(n+k)+n−2, [(n+ k − 1)n1 , 1n+n1−2]),

n even, n1 even, h∨ = n1(n+ k) + n

2 ,

VOAD : W−h
∨+ h∨

2n+2k+1 (son1(2n+2k+1)+n+2, [(2n+ 2k)n1 , 1n+n1+2]),

n odd, n1 even, h∨ = n1(2n+ 2k + 1) + n,

VOAE : W−h
∨+ h∨

2n+2k+1 (sp(n1+1)(2n+2k+1)+n−2, [(2n+ 2k)n1+1, 1n+n1−1]),

n odd, n1 even, h∨ = (n1 + 1)(2n+ 2k + 1) + n

2 ,

(3.67)

with explicit 2d central charges given by equations (3.10), (3.38), (3.49), (3.57) and (3.65),

c(VOAA) = −
(
n2 − 1

)
(k + n− 1)− n1(n+ n1)(3k + 3n− 2),

c(VOAB) = −1
2(n+ 1)(n+ 2)(n+ k − 1)− 1

2n1(n+ n1 + 2)(3k + 3n− 2),

c(VOAC) = −1
2(n− 2)(n− 1)(n+ k − 1)− 1

2n1(n+ n1 − 2)(3k + 3n− 2),

c(VOAD) = −(n+ 1)(n+ 2)(k + n)− 1
2n1(n+ n1 + 2)(6k + 6n+ 1),

c(VOAE) = −1
2(n− 1)[2n2 + 2(k + 1)(n+ 1)− 1]− 1

2n1(n+ n1)(6k + 6n+ 1).

(3.68)

Recalling the central charge of AKM algebra gk is

c(gk) = k dim g

k + h∨
, (3.69)
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with h∨ the dual Coxter number of g, one can show that central charges of AKM subalgebras
on the left hand side of equation (3.66) are equal to central charges of W algebras on
the right hand side. It would be interesting to check whether they are indeed conformal
embeddings.

3.3 Exceptional Lie algebra

Now consider AD theories constructed using exceptional 6d (2, 0) theory. In general, we
have a theory with flavor symmetry En×G, whereG is some subgroup of En. Unfortunately,
we do not know how to realize the above theory using the configuration presented in
section 2. Instead we analyze its Coulomb branch when a generic regular singularity
is present, and check whether one can find the same Coulomb branch spectrum using
constructions presented in section 2. We do not attempt to do a general analysis, and only
give some examples here:

• Start with e8 theory and look at the regular puncture whose Nahm label is [A1] [68],
then the flavor symmetry is E7. The flavor central charge is,

kE7 = 24− 30
30 + k

, (3.70)

We would like to realize this theory by using a 6d (2, 0) e7 theory with a full puncture
of E7 type. The flavor central charge in e7 construction is,

kE7 = 18− 18
18 + k′

, (3.71)

We find a solution with 30 + k = 2 = 18 + k′ = 2. Both theory has the Coulomb
branch spectrum [9, 5, 3] (these numbers can be derived using Newton polygon of E8
type theory [43] and the pole structure of E8 nilpotent orbit [A1] [76]). However the
E7 description has an extra U(1) flavor symmetry. The VOA is

W−15(e8, [A1]) . (3.72)

Here [A1] denotes minimal nilpotent orbit of e8 Lie algebra. The interpretation is
that the e8 description misses the U(1) flavor symmetry.

• Now look at e7 theory with regular puncture whose Nahm label is [A1]. The flavor
symmetry is SO(12), and the flavor central charge is,

kSO(12) = 18− 18
18 + k

. (3.73)

On the other hand, starting with the so12 realization, the flavor central charge is,

kSO(12) = 14− 10
10 + k′

. (3.74)

Again, we find solution 18 + k = 18 + k′ = 2. For this value, E7 configuration
has an extra U(1) flavor symmetry. The so12 descrition also has an extra U(1)
flavor symmetry. The Coulomb branch spectrum is [5, 3], which is read from Newton
polygon. We can not find its VOA because of this extra U(1) flavor symmetry.
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• Finally we look at an e6 theory with a regular puncture whose Nahm label is [A1].
The flavor symmetry is SU(6), and the flavor central charge is,

kSO(10) = 9− 12
12 + k

. (3.75)

In an su6 realization, the flavor central charge is,

kSU(6) = 6− 6
6 + k′

. (3.76)

The matching of flavor central charges kSO(10) = kSU(6) requires 12 + k = 6 + k′ = 2.
Now in the SU(6) description, there is an extra U(1) flavor symmetry, and it is just
the flavor symmetry of the N = 2 SU(3) superQCD (SQCD) with six fundamental
hypermultiplets. The e6 description has just SU(6) manifest flavor symmetry. The
VOA is

W−6(e6, [A1]) . (3.77)

We claim that this W algebra is the VOA for SU(3) SQCD with six fundamental
flavors. One simple check is that the central charge of this W algebra is −34 which
is equal to −12c4d, where c4d = 34/12 is the central charge of SU(3) SQCD with six
fundamental flavor. It is interesting to notice that there is an emerging U(1) flavor
symmetry for the W algebra.

Now we move on to more interesting examples with exceptional flavor symmetries.
Some rank one theories with following data were found in [77],

G = B3, kB3 = 2, u = [2], V−2(B3),
G = G2, kG2 = 2, u = [2], V−2(G2),
G = F4, kF4 = 3, u = [3], V−3(F4).

(3.78)

The (a, c) central charges of B3 and G2 theory are the same as the N = 2 SU(2) SQCD
with four flavors. The F4 theory also has the same (a, c) central charge as the E6 Minahan-
Nemeschansky theory [78]. There are interesting relations between corresponding VOAs of
these 4d theories. In fact, following conformal embeddings were proven in [79],

V−2(B3) ⊂ V−2(D4), V−2(G2) ⊂ V−2(B3), V−3(F4) ⊂ V−3(E6). (3.79)

It would be interesting to study further the relation between these VOAs and what they
imply for 4d theories.

3.4 Comments on collapsing levels

We now make some remarks on collapsing levels of a W algebra into its affine piece, namely
finding the proper nilpotent orbit f of the Lie algebra g and level k′ such that the following
equivalence between two VOAs holds,

W k′(g, f) = Vk(g′). (3.80)
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We determine f and k′ by matching the Coulomb branch spectrum and other data of corre-
sponding 4d theories. In practice, important insights can be gained if one first requires that
flavor central charges should be equal for two descriptions. First consider some examples
in detail. The (2, 0) configuration is the following,

g′, Φ = T

z2+k/h∨ , f = ftrivial, (3.81)

where k is integer-valued for g′ = ADE, and half-integral valued for twisted theories. k is
restricted such that there is no flavor symmetry associated with the irregular singularity.

• Consider g′ = so2N , and the 4d flavor central charge −k = (2N − 2) − 2N−2
k+2N−2 .

To find a W algebra whose 4d partner has the same Coulomb branch spectrum, we
consider soqm+2N theory with the regular singularity f = [qm, 12N ]. Naively, this
puncture has the flavor symmetry SO(2N) × SO(m). The 4d flavor central charge
−k′ of SO(2N) flavor group in this description is

− k′ = m+ 2N − 2− qm+ 2N − 2
2N − 2 + k

. (3.82)

Matching −k′ with −k = (2N − 2)− 2N−2
k+2N−2 leaves the requriement

q = 2N − 2 + k, (3.83)

which is odd, so there might be the following equality of VOAs,

W−h
∨+ h∨

2N−2+k (som(2N−2+k)+2N , [(2N − 2 + k)m, 12N ]) = V−(2N−2)+ 2N−2
2N−2+k

, (so2N ).
(3.84)

with h∨ = m(2N − 2 + k) + 2N − 2. The flavor central charge for the SO(m) flavor
symmetry is then,

m(2N − 2 + k) + 2N − 2− (2N − 2 + k)m(2N − 2 + k) + 2N − 2
2N − 2 + k

= 0, (3.85)

which implies that the SO(m) flavor symmetry is decoupled in the IR. One can check
that above two configurations give the same Coulomb branch spectrum.

• Given g′ = sp2N−2, one has the following collapsing levels and nilpotent orbits,

W−h
∨+ h∨

2N+2k+1 (spm(2N+2k+1)+2N−2, [(2N+2k+1)m, 12N−2]) = V−N+ N
2N+2k+1

, (sp2N−2)
(3.86)

and h∨ = m(2N+2k+1)+2N
2 .

• Taking g′ = so2N+1, one finds the following collapsing levels and nilpotent orbits,

W−h
∨+ h∨

4N+2k−1 (spm(4N+2k−1)+2N+1, [(4N+2k−1)m, 12N+1]) = V−(2N−1)+ 2N−1
4N+2k−1

(so2N+1),
(3.87)

with h∨ = m(4N + 2k − 1) + 2N − 1.
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In above cases, we can choose more general puncture on AKM side, and we then have
collapsing of one W algebra into another W algebra.

We interpret our results as follows. Taking g = slN (other cases are similar) and the
irregular singularity,

g = slN , Φ = T

z2+ k
N

, f generic, (3.88)

the Seiberg-Witten curve takes the following form

xN +
∑
i=2

φi(z)xN−i = 0. (3.89)

If there is no Coulomb branch operators in φN , it is possible to find a (2, 0) realization with
a lower rank Lie algebra. Assume we have a generic regular puncture, and denote hN (f)
the height of the Nth box in Young tableaux f with hN ≤ N . Denote u as the Coulomb
branch operator in φN , then its scaling dimension is [u] = N − hNN

k+N . To have a reduced
theory (no Coulomb branch operators in φN (z)), [u] should have scaling dimension less or
equal to one, so φN is zero and the above is factorized as,

x

(
xN−1 +

∑
i=2

φi(z)xN−1−i
)

= 0. (3.90)

Then it is possible to find a description with lower rank (2, 0) theory. The constraint on
hN is then,

[u] = N − hNN

k +N
≤ 1→ hN ≥

(−1 +N)(k +N)
N

. (3.91)

Since hN ≤ N , the above equation has solution if k < 0. So if we have following situation

W k′(slN , f), k′ = −N + N

k +N
, k < 0. (3.92)

Then if hN (f) ≥ (−1+N)(k+N)
N , there is a collapsing of slN type W algebra into a slN ′ type

W algebra with N ′ < N .

4 The Higgs branch

The Coulomb branch spectrum of theories studied above can be found from Newton poly-
gon, their dimensions are listed here for later uses (ABCDE label theories studied in
section 3),

A : nC = (n+ k − 1)(2n1 + n− 1)
2 ,

B : nC = (n+ k − 1)(2n1 + 2 + n)
4 ,

C : nC = (n+ k − 1)(2n1 − 2 + n)
4 ,

D : nC = (n+ k)(2n1 + n+ 1)
2 ,

E : nC = (n+ k)(2n1 + n− 1)
2 .

(4.1)
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We already know the flavor symmetry on the Higgs branch of 4d theories we studied in
this paper, in this section we will use the associated variety of their corresponding VOAs
to learn the Higgs branch chiral ring of these theories.

4.1 The Higgs branch as the associated variety of the VOA

The W algebras appear in section 3 take following form, W k′(g, f) with f = [mq, 1s]. The
associated variety of the above W algebra is given by following formula [80],

Sf ∩XM . (4.2)

Here Sf is the Slowdoy slice associated with the nilpotent orbit f , and XM is the associated
variety of the affine vertex operator algebra g with the level k′. If the level k′ is admissible,
the associated variety of AKM is found in [80]. We list the result below (we only show
result for k > 2 here, interested readers can work out the general case):

A : XM = [(n+ k)n1 , n],
B : XM = [(n+ k)n1 , n+ 2],
C : XM = [(n+ k)n1 , n− 2],
D : XM = [(2n+ 2k + 1)n1 , n+ 2],
E : XM = [(2n+ 2k + 1)n1+1, n− 2].

(4.3)

Here XM is the nilpotent orbit specified by the listed partition. In the following, we will
describe these Higgs branches in some detail.

4.2 The Higgs branch as a quiver variety

Let us compactify our 4d theory on a circle and flow to deep IR to get a 3d N = 4 SCFT.
The Higgs branch of the 3d theory is the same as the 4d theory, so it is described by the
associated variety of the corresponding VOA. Meanwhile the 3d theory has a Coulomb
branch which is also a hyperkahler manifold.

The 3d N = 4 theory has an interesting mirror symmetry: there is a mirror theory B

whose Higgs branch is the Coulomb branch of theory A, and vice versa. If the mirror theory
has a Lagrangian description, its Higgs branch is described by the classical hyperkahler
quotient. Let’s look at our class A theory whose VOA is:

W−n1(n+k)−n+ n1(n+k)+n

n+k (sln1(n+k)+n, [(n+ k − 1)n1 , 1n+n1 ]) . (4.4)

For the special case k = 1, we conjecture that the mirror theory is given by the quiver
in figure 11. The simple counting of dimensions of Coulomb and Higgs branch of mirror
quiver is:

nH = nn1 + 1
2n(n− 1), nC = 1

2n(n− 1) + n1(n+ n1). (4.5)

The dimension nH of 3d mirror is equal to the Coulomb branch dimension of original 4d
theory, see (4.1).

In the following, we use the methods proposed in [81] to describe the Higgs branch as
a quiver variety. Considering a nilpotent orbit f = [(n + k − 1)n1 , 1n+n1 ] and XM with
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1 2 n1

n1 + n− 1
2 1

1
n

Figure 11. 3d mirror for 4d theory whose associated VOA is (3.9) with k = 1. From this quiver,
one can actually read another Hitchin system description which uses type III irregular singularity
as discussed in [26], and we check the Coulomb branch spectrum which is the same as the one found
using the construction in section 3.

M = [(n + k)n1 , n], we would like to find the variety of Sf ∩ XM . Firstly we need the
transpose of M , M t = [(n1 + 1)n, (n1)k]. Using f and M t, one can form a D5−NS5−D3
systems [81] as shown in figure 12. After moving D5 branes according to rules in [81],
one obtain an equivalent brane configuration shown in figure 13 which leads to the quiver
gauge theory of Sf ∩XM as shown in figure 14. The dimension of Sf ∩XM can be easily
read from the Higgs branch of the quiver 14,

dim(Sf ∩XM ) = nH = 1
2n(n− 1) + n1(n+ n1), (4.6)

which is actually independent of k.

5 VOA for theories with exact marginal deformations

If a four dimensional N = 2 SCFT has exact marginal deformations, then it is possible to
write down a weakly coupled gauge theory description which typically looks like figure 15.
If we know the VOA Vi for each matter (which should have an affine vertex subalgebra
Vki

(Gi)), the VOA for the parent theory is given by the following coset,

V0 = V1 ⊕ V2 ⊕ . . .
(G1)−2h∨1 ⊕ (G2)−2h∨2 ⊕ . . .

. (5.1)

We use the fact that the conformal gauging condition implies that the sum of levels from
the matter gauged by gauge group Gi is −2h∨i . If there are more than one weakly cou-
pled gauge theory descriptions, then we have found equivalence between non-trivial coset
constructions.

5.1 Weakly coupled gauge theory descriptions for AD theories

Consider AD theory engineered using following data,

g, Φ = T

z
2+ qk

qn

, f, (5.2)

where (k, n) is coprime, and T is taken to be the most general matrix allowed by the
grading. The corresponding AD theory often has exact marginal deformations, and its
weakly coupled gauge theory description is found in [42, 43]. Here we summarize the basic
ideas:

– 30 –



J
H
E
P
0
4
(
2
0
2
1
)
0
7
6

n
+
n

1

2n
+
n

1 +
k
−

1

n
1

(n
+
k)+

n

D5 D5 D5 D5 D5 D5 D5 D5

D3
D3 D3

D3

D3 D3

(a)

n1 (n+ k − 1) + n− 1

D3

n1 (n+ k) + n

D3

(k − 1)n1

D3

kn1

D3

n1

D3NS5 NS5NS5 NS5 NS5 NS5 NS5

(b)

D3D3 D3NS5 NS5 NS5 NS5
D3

D5D5D5D5

D3

︸ ︷︷ ︸
Sf

XM︷ ︸︸ ︷

(c)

Figure 12. (a): the brane construction of Sf with f = [(n+ k − 1)n1 , 1n+n1 ]. The number of D3
branes between i-th and i + 1-th D5 branes are

∑n+2n1
j=n+2n1−i+1 fj . (b): the brane construction of

XM with M t = [(n1 + 1)n, (n1)k]. The number of D3 branes between i-th and i+ 1-th NS5 branes
is n1(n+ k) +n−

∑i
j=1 M

t
j . (c): schematics of brane construction of Sf ∩XM which just connects

(a) and (b). One can connect these two brane configurations because the total number of boxes of
f and M are the same, therefore the same amount of D3 branes.

n+ n1 − 1
D3s

n+ n1 − 2
D3s

n1 D3s

n+n1 D5s︷ ︸︸ ︷ n1 D5s︷ ︸︸ ︷
NS5 NS5 NS5 NS5

n1 D3s

k NS5s︷ ︸︸ ︷

Figure 13. The brane construction after brane moves of Sf ∩XM with f = [(n+ k − 1)n1 , 1n+n1 ]
and M = [(n+ k)n1 , n].

– 31 –



J
H
E
P
0
4
(
2
0
2
1
)
0
7
6

n+ n1 n+ n1 − 1 n+ n1 − 2 n1 + 1 n1 n1 n1

︸ ︷︷ ︸
k

Figure 14. The quiver of Sf ∩XM with f = [(n+ k − 1)n1 , 1n+n1 ] and M = [(n+ k)n1 , n].

T1 G1 T2 G2 · · ·

Figure 15. A typical quiver for the weakly coupled gauge theory description of a 4d N=2 SCFT.
Ti’s are matter systems with non-abelian flavor symmetries, and Gi’s are gauge groups.

• We first represent the above theory by an auxiliary punctured sphere Σ with na black
marked points (na is equal to the number of exact marginal deformation plus one),
one blue marked point representing the irregular singularity with flavor symmetries,
and one red point representing the regular singularity.

• The weakly coupled description is found by finding a pair-of-pants decomposition of
Σ with the rules,

a) In degenerating a tube, one create a pair of blue marked point and red marked
point.

b) Each three punctured sphere in the pants decomposition has one black, one red
and one blue puncture.

Now the crucial thing is to determine the puncture type created in the degeneration limit
and the matter which is identified with the three punctured sphere. It turns out that the
matter appearing in the above degeneration is exactly the matter studied in section 3.
Since we have already figured out the VOA for the matter part,10 we can now describe the
VOA for the full theory as a coset.

Now we discuss in more detail about VOA of general A type theory. A general AD
theory of A type is represented by following configuration,

g = slnq+n1 , Φ = T

z
2+ kq

nq

, f = [hr1
1 , . . . , h

rt
t ]. (5.3)

Here (k, n) = 1. T = diag(Inq×nq, 0n1). This theory has flavor symmetries U(n1) ×
U(1)q−1 ×GF ,11 where GF is the flavor symmetry associated to the regular puncture,

GF =
∏

U(ri)/U(1). (5.4)

Weakly coupled gauge theory descriptions are given in [43]. The idea is to represent our
theory by an auxilliary punctured sphere Σ with q black marked points, one red marked

10In fact, we only have the full VOA information for following cases: n arbitrary of A type theory; n even
of DN and DN twisted type theory; and n odd for twisted sl2N and sl2N+1 theory.

11In general, we can choose a partition of size n1 such that one can have more general flavor symmetries
other than U(n1).
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Figure 16. Puncture Riemann surface and its degeneration: each three punctured sphere represents
a AD matter, and each tube represents a gauge group.

point reprenting the data of regular singularity, and one blue marked point represent U(n1)
flavor symmetry for the irregular singularity.12 In particular, the theory considered in last
section is represented by a three puncture sphere, whose VOA is identified as a W algebra.

The weakly coupled gauge theory description is given by finding a pair-of-pants decom-
position of Σ such that each tube is connected by a blue and red punctrue. Moreover, each
three punctured sphere has to have one blue, one red and one black puncture as shown in
figure 16. Now since we have already identified the VOA for each three punctured sphere,
the VOA for the original theory is constructed from cosets of the VOA of the matter system.

Example. Taking n1 =0 and f=[nq] in (5.2), this theory is also called the (Anq−1, Akq−1)
theory. To find the weakly coupled gauge theory description, we represent our theory by a
sphere Σ with q black points, one trivial blue point and one trivial red point. The weakly
coupled description is described by taking a pants decomposition of Σ such that each pant
has a black puncture, a red punctrue, and a blue puncture. We assume k ≥ n without
losing any generality. The weakly coupled gauge theory description is shown in figure 17,
where

a =
[
qk

n+ k

]
, b =

[
qn

n+ k

]
. (5.5)

The square bracket means the integral part of the number inside. The flavor symmetry of
the matter content is,

Ti : U((i− 1)n)× SU(in), Li : U(ik)×U((i− 1)k), Ta+1 : U(an)×U(bk) (5.6)

Ti is the theory studied in section 3, which is engineered by following configuration,

g = slin, Φ = T

z2+ k
n

, f = [1in], (5.7)

with T = diag(In×n, 0(i−1)n). The matter system Li is engineered by following configu-
ration,

g = sln+ik, Φ = T

z2+ k
n

, f = [n+ k, 1(i−1)k], (5.8)

with T = diag(In×n, 0ik). For Li’s however, a U(1) flavor symmetry inside U(ik) is decou-
pled. The reason is that the central charge of AKM part (with this extra U(1)s) is bigger

12For n = 1, k 6= 1, a blue puncture is equivalent to a red puncture. For n = 1, k = 1, all three type of
punctures are the same [43].
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T1 SU(1) Ta SU(an) Ta+1 SU(bk) Lb SU(bk − k) SU(k) L1

Figure 17. The weakly coupled description of (Anq−1, Akq−1) theory with a =
[

qk
n+k

]
and

b =
[

qn
n+k

]
.

SU(k) SU(2k) kNSU(Nk − k)

Figure 18. The Lagrangian description of the theory (5.10).

than the full central charge, so some flavor symmetries have to be decoupled. On the other
hand, one can find a different realization of Li where the extra U(1) flavor symmetry is
indeed gone (see section 3.1.3).

There is another descrition of the same theory:

g = slqk, Φ = T

z
2+ qn

qk

, f = [qk], (5.9)

which is just the level-rank dual of the original 4d theory. The weakly coupled gauge theory
description is found in similar way, but the VOA of each matter is described differently
(which is just the level rank dual discussed in section 3.1.1). So the level rank duality of
above theory is the consequence of the level-rank duality of each AD matter.

5.2 Theory with Lagrangian description

Some theories have Lagrangian descriptions, therefore one can find the VOA by cosets of
symplectic bosons. Here are some examples,

g = slkN , Φ = T

z2+−N+1
N

, f = [1kN ]. (5.10)

This theory has a Lagrangian description given by the quiver in figure 18. Now each matter
is just bifundamental hypers and its VOA is a set of symplectic bosons, and the VOA of
the full theory is just the coset of symplectic bosons.

6 More on the conformal embedding

VOAs for AD matters considered in this paper have the interesting property that their
AKM subalgebras have the same central charges as full VOAs, so they define possible con-
formal embeddings. In this section, we will show that such possible conformal embeddings
are much more general in our theory space. Consider following configuration,

Φ = T

z2+ k
b

, f = trivial, (6.1)

where T is given by a principle grading, and the classification of b is summarized in section 2.
The flavor symmetry group is U(1)f0 × GF , where f0 is the number of mass parameters

– 34 –



J
H
E
P
0
4
(
2
0
2
1
)
0
7
6

encoded in irregular singularity and GF is the flavor symmetry from the regular singularity.
It was noticed in [35] that the 4d central charge has the following form:

c4d = 1
12

(
kG dim(G)
−kG + h∨

− f0

)
. (6.2)

Here kG is the flavor central charge of flavor group GF . So the corresponding central charge
of 2d VOA is

c2d = −12c4d = k2d dim(G)
k2d + h∨

+ f0. (6.3)

Here we use the correspondence k2d = −kG. We know that the 2d VOA has a AKM subal-
gebra Vk(G)× U(1)f0 , and the central charge of AKM sector is exactly the central charge
of full VOA. Therefore, potentially we have a conformal embedding of AKM subalgebra
Vk(G)×U(1)f0 into the VOA. If we can indeed prove the above conformal embedding, we
could define the full VOA as a reducible module of AKM subalgebra, which would provide
us a definition of the full VOA.

The conformal embedding of the AKM algebra into the full VOA is generally not true
if we change the regular singularity to a generic one. The conformal embedding is possible
only for very special choice of level and nilpotent orbit f , see examples in section 3.

Now consider a theory which has exact marginal deformations, and one can find a
weakly coupled gauge theory description. Assuming that each matter has a conformal
embedding of AKM, we now prove that the full theory also has a possible conformal
embedding (at least the total central charges of AKM pieces and that of the full VOA are
the same). Assume that the weakly coupled gauge theory description has the form,

TL − G − TR, (6.4)

and also assume that TL part has flavor symmetry GL×G, and TR part has flavor symmetry
GR × G, here G is a simple factor of flavor symmetry group of two matter systems for
simplicity. The full theory then has the flavor symmetry GL ×GR. The central charge of
4d theory is,

c4d = cTL
+ 2 dim(G)

12 + cTR
. (6.5)

If each individual piece has a conformal embedding, we have

cTL
= c(GL) + 1

12
kLG dim(G)
−kLG + h∨

, cTR
= c(GR) + 1

12
kRG dim(G)
−kRG + h∨

, (6.6)

where c(GL) and c(GR) is the AKM central charge from the flavor symmetry GL and GR
respectively, and kLG and kRG are flavor central charges. Conformal gauging requires,

kLG + kRG = 2h∨. (6.7)

Substiting (6.6) and (6.7) into (6.5), we find that

c4d = c(GL) + c(GR). (6.8)
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So the full theory also has a possible conformal embedding. We have concluded that the
gauged system has the conformal embedding if each matter piece has the conformal em-
bedding. On the other hand, if we assume that one piece of matter and the gauged system
has the conformal embedding, the other piece of matter would also have the conformal
embedding.

The general AD matter has three non-abelian flavor symmetries [41, 42], and the
addition of a third non-abelian flavor symmetries would not change the flavor central
charge of the other two non-abelian flavor symmetries. We have shown in section 3 that
conformal embedding of two non-abelian AKMs into a W algebra W k′(g, f) is possible,
one might wonder whether it is possible to have a conformal embedding of general AD
theory into a W algebra. However the analysis of section 3.1.3 shows that the conformal
embedding of three AKM into a W algebra is not possible (the third non-abelian flavor
symmetry would have flavor central charge zero and is decoupled).

7 Conclusion

We have identified VOAs of a class of AD matters with two distinct non-abelian flavor
symmetries as W algebras. Using weakly coupled gauge theory descriptions formed by
gauging above types of AD matters, we found the VOA for more general AD theories
engineered from 6d (2, 0) SCFTs, i.e. VOA for general (AN−1, Ak−1) theory is found.

One usually learns many interesting properties of 4d theory by using properties of
2d VOA, since 4d theory is strongly coupled and little is known about their spectrum
while many aspects of 2d VOA are much more well understood. Therefore it is pleasant
that 4d theory can actually predict many interesting features about 2d VOAs. In this
paper, we show that the simple fact that a single 4d SCFT can be engineered by different
6d configurations can often teach us very interesting lessons about VOAs. For example,
we find new level-rank duality, coset descriptions, possible conformal embeddings, and
etc. Although VOA is mainly about the Schur sector which includes the Higgs branch
information, the usage of Coulomb branch data is often very useful in telling whether two
configurations are the same or not, which in turn teaches us interesting lessons of VOA.

One of interesting lesson we learned in this paper is that the flavor symmetries of
SCFTs defined by a 6d (2, 0) construction is a subtle issue. There are situations where
the naive flavor symmetry is actually decoupled in the IR, which corresponds to collapsing
levels of 2d VOA. There are also situations where there is extra flavor symmetries which
are not manifest in certain 6d descriptions. Therefore it is interesting to understand the
emergency of symmetry from the VOA point of view.

The general AD matter has three non-abelian flavor symmetries, and the remaining
task is to identify VOAs for them. Once we find VOAs for these AD matters, we can
find the VOA for all SCFTs constructed from 6d (2, 0) construction. VOAs defined using
junctions of N = 4 boundary conditions are studied in [82, 83]. It appears that they have
similar structures involving two or three Lie algebras, and it would be interesting to figure
out whether these VOAs have anything to do with VOAs studied in this paper.
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We mainly identify the 4d/2d pair in this paper, and a detailed study of characters
and its physical implication will be given in a follow-up paper.
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A Hitchin system descriptions for (G, G′) and Dp(G) theory

There are various class of four dimensional N = 2 AD SCFTs found in the literature, and
they have different labels which might cause some confusions. Here we provide a mapping
between these labels and our theories. There are three class of theories:

1. Theories with label (G,G′) [84]. This class of theories are engineered by following
3-fold singularity:

fG(x, y) + fG′(z, w) = 0. (A.1)

Here G = ADE and fG(x, y) are following polynomials:

fAN
= x2 +yN+1, fDN

= xN−1 +xy2, fE6 = x3 +y4, fE7 = x3 +xy3, fE8 = x3 +y5.

(A.2)
There is a symmetry exchanging G and G′ in the definition of the 3d singularity
so that the (G,G′) theory is the same as the (G′, G) theory. This class of theories
include the original AD theory found in [85] (it is the (A1, A2) theory), and the later
ADE generalizations [86] (They are (A1, G) type theories) with G = ADE. This class
of theories typically do not have any non-abelian flavor symmetries, although they
could have abelian flavor symmetries.

2. Theories with label Dp(G) [87], where p is a positive integer and G = ADE. For
G = AN , they are called type IV theory in [26]. This class of theories has a flavor
symmetry group G and possibly some more abelian flavor symmetry depending on
value of p.

3. Theories with label (J (b)[k], f) in [27], with k > −b. They were studied in [26, 27]
and are defined using 6d (2, 0) SCFT with following data,

J = ADE, Φ = T

z2+ k
b

, f. (A.3)

Here f is a nilpotent orbit of J = ADE,13 and T is a regular semi-simple matrix
whose form depending on value b. b takes a finite set of numbers as in table 1, and
in particular b can always take the value h∨ which is the dual Coxeter number. For

13Here we use Nahm labels so that a regular nilpotent orbit gives no flavor symmetry, while the trivial
nilpotent orbit gives G flavor symmetry with G the Lie group of g.
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J = AN−1, b = N , it is called type I theory in [26], and for b = N − 1, it is called
type II theory in [26].

We have the following mapping between the third class of theories and the first two class
of theories:

(Jh∨ [k], freg) = (J,Ak−1), (Jh∨ [k], ftrivial) = Dk+h∨(J). (A.4)

Here h∨ is the dual Coxeter number.

B Coulomb branch spectrum from the Newton polygon

Let us now briefly review how to find the Coulomb branch spectrum from the Newton
polygon:

• The SW curve at SCFT point is

xn+n1 + xn1zk = 0. (B.1)

The scaling dimension of x and z coordinates can be found as follows. Each term in
the above equation has the same scaling dimension, so we have n[x] = k[z]. The SW
differential λ = xdz has scaling dimension one, therefore[x] + [z] = 1. We then have,

[x] = k

n+ k
, [z] = n

n+ k
. (B.2)

• The full SW curve takes the following form,

xn+n1 + xn1zk +
∑
i,j

uijx
n+n1−izj = 0. (B.3)

We include all monomials in the Newton polygon (including boundary points) and
the coefficients uij are parameters of 4d N = 2 theory including vevs of Coulomb
branch operators, coupling constants and mass parameters. The scaling dimension
of uij is computed by the requirement that each term has same scaling dimension,
therefore,

[uij ] = i[x]− j[z] = ik

n+ k
− jn

n+ k
. (B.4)

The Coulomb branch spectrum of a theory is defined as subsets of uij whose scaling
dimension is bigger than one (We only consider the lattice points inside Newton
polygon, and the boundary points whose scaling dimensions are bigger than one are
actually mass parameters), and we have the following Coulomb branch spectrum,{

l − jn

n+ k

}
, l = 2, . . . , n, j = 1, . . . ,

[(l − 1)(n+ k)
n

]
,{

l − jn

n+ k

}
, l = n+ 1, . . . , n+ n1, j = 1, . . . , n+ k − 1.

(B.5)
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Now if there is a generic puncture with Young tableaux of size n+n1, we label the
boxes of Young tableaux from one to n+n1 row by row, and record the height of the
lth box as h(l),14 then the Coulomb branch spectrum has the following description,{

l − jn

n+ k

}
, l = 2, . . . , n, j = h(l), . . . ,

[(l − 1)(n+ k)
n

]
,{

l − jn

n+ k

}
, l = n+ 1, . . . , n+ n1, j = h(l), . . . , n+ k − 1.

(B.6)

C The central charge of W k(g, f)

To any sl2-triple {f, x, e} in g, where [x, f ] = −f , [x, e] = e, one associates a W-algebra
W k(g, f) through the quantum Hamiltonian reduction from the vacuum ĝ-module of level
k. The central charge of W k(g, f) is

c(W k(g, f)) = dim g0 −
1
2 dim g 1

2
− 12
k + h∨

|ρ− (k + h∨)x0|2, (C.1)

where
x0 = x

2 , (C.2)

and
gj = {g ∈ g|[x0, g] = jg}. (C.3)

For g = sln = An−1, the Cartan subalgebra h is the set of traceless diagonal n by
n matrices. Define linear functionals ei ∈ h∗ by ei(H) = ith diagonal entry of H where
1 ≤ i ≤ n. Then the root system of g is

{ei − ej | 1 ≤ i, j ≤ n, i 6= j}. (C.4)

The set of positive roots is {ei − ej | i < j}. The (ei − ej)-root space is spanned by the
elementary matrix Ei,j with its ij-entry 1 and zeros otherwise.

Nilpotent orbits in An−1 are labelled by partitions of n (or Young tableaux of n boxes).
Following the notation and recipe in [88], for the partition Y = [d1, · · · , di, · · · , dl], choose
a block of consecutive indices {Ni + 1, · · · , Ni + di} in such way that disjoint blocks are
attached to different di’s. Then define the set of simple roots for each di,

C+(di) = {eNi+1 − eNi+2, · · · , eNi+di−1 − dNi+di
}, (C.5)

with C+ empty whenever di = 1. One choice of the standard triple {H,X, Y } for Y is,

H =
∑

1≤i≤l
HC(di) =

∑
1≤i≤l

∑
1≤j≤di

(di − 2j + 1)ENi+j,Ni+j , (C.6)

and
X =

∑
α∈∪iC+(di)

Xα,

Y =
∑

α∈∪iC+(di)
X−α,

(C.7)

14For a full puncture with Young tableaux [1, . . . , 1], we have h(l) = [1, . . . , 1].
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where Xα is the α-root vector. Finally x is the diagonal matrix derived from H via Weyl
group of An−1 satisfying the ∆-dominant condition,

x1 ≥ x2 ≥ · · · ≥ xn. (C.8)

For example, given the tomahawk tableaux Y = [2, 2, 1, 1] for g = sl6 = A5, H is

H = diag(1,−1, 1,−1, 0, 0), (C.9)

and x is
x = diag(1, 1, 0, 0,−1,−1). (C.10)

Notice the diagonal entry of x is also its coordinates in orthogonal basis of An−1, and
the coordinates of ρ in orthogonal basis is,

ρ = 1
2 (n− 1, n− 3, · · · ,−n+ 3,−n+ 1) . (C.11)

One can then easily compute (ρ, ρ), (ρ, x0) and (x0, x0) because they are just ordinary scalar
product in orthogonal basis. For tomahawk tableaux Y = [qm, 1n−qm], explicit results are,

(ρ, ρ) = 1
12(n3 − n),

(x0, x0) = 1
12m(q3 − q),

(ρ, x0) =


1
24mq(3nq −m(2 + q2)), q even,
1
24m(3n−mq)(q2 − 1), q odd.

(C.12)

dim g0 and dim g 1
2

can be solved easily using the explicit expression of x0. For toma-
hawk tablaeux Y = [qm, 1n+1−qm], the explicit expressions are,

dim g0 =

(n−mq)2 +m2q − 1, q even,
(n−mq +m)2 +m2(q − 1)− 1, q odd,

(C.13)

and

dim g 1
2

=

2m(n−mq), q even,
0, q odd.

(C.14)

Plugging results in the central charge formula (C.1), the central charge for Y =
[qm, 1n−mq] is,

c(W k(sln, [qm, 1n−mq])) = mq(k−n+ (m+ 3n)q− (k+m+n)q2)− k + k(m− n)n+mn2

k + n
.

(C.15)
For other Lie algebra g, partitions will be specified to particular cases used in the main

context. The general recipe for sl2-triple can be found in [88]. In the case of g = so2n = Dn

and the partition Y = [qm, 12n−qm] with q and m even, one can work out x0,

x0 = 1
2

(
D 0
0 −D

)
, (C.16)
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with
D = diag(q − 1, . . . , q − 1︸ ︷︷ ︸

m

, q − 3, . . . , q − 3︸ ︷︷ ︸
m

, . . . , 1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0), (C.17)

therefore

(ρ, ρ) = 1
6(n− 1)n(2n− 1),

(x0, x0) = 1
24mq(q

2 − 1),

(ρ, x0) = − 1
48mq(m(q2 + 2) + q(−6n+ 3)),

(C.18)

and also

dim g0 = 1
2qm

2 +
(
n− 1

2mq
)2

+
(
n− 1

2mq
)(

n− 1
2mq − 1

)
,

dim g 1
2

= 2m
(
n− 1

2mq
)
.

(C.19)

Combining all results, the central charge is,

c(W k(so2n, [qm, 12n−mq])) = −1
2mq((k +m+ 2n− 2)q2 − q(6n+m− 3) + 2n− k + 1)

− kn(m− 2n+ 1) + 2mn(n− 1)
k + 2n− 2 .

(C.20)

In the case of g = so2n+1 = Bn and the partition Y = [qm, 12n+1−qm] with q and m

even, one can work out x0,

x0 = 1
2

 0 0 0
0 D 0
0 0 −D

 , (C.21)

with
D = diag(q − 1, . . . , q − 1︸ ︷︷ ︸

m

, q − 3, . . . , q − 3︸ ︷︷ ︸
m

, . . . , 1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0), (C.22)

therefore

(ρ, ρ) = 1
12n(2n− 1)(2n+ 1),

(x0, x0) = 1
24mq(q

2 − 1),

(ρ, x0) = − 1
48mq(m(q2 + 2)− 6nq),

(C.23)

and also

dim g0 = 1
2qm

2 +
(
n− 1

2mq
)2

+
(
n− 1

2mq
)(

n− 1
2mq − 1

)
+ 2

(
n− 1

2mq
)
,

dim g 1
2

= 2m
(
n− 1

2mq
)

+m.

(C.24)
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Combining all results, the central charge is,

c(W k(so2n+1, [qm, 12n+1−mq])) = −1
2mq((k +m+ 2n− 1)q2 − q(6n+m) + 2n− k + 2)

− (2n+ 1)(m(k + 2n− 1)− 2kn)
2(k + 2n− 1) .

(C.25)

In the case of g = sp2n = Cn and the partition Y = [qm, 12n−qm] with q even, one can
work out x0,

x0 =
(
D 0
0 −D

)
, (C.26)

with
D = diag(q − 1, . . . , q − 1︸ ︷︷ ︸

m

, q − 3, . . . , q − 3︸ ︷︷ ︸
m

, . . . , 1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0), (C.27)

therefore

(ρ, ρ) = 1
12n(n+ 1)(2n+ 1),

(x0, x0) = 1
12mq(q

2 − 1),

(ρ, x0) = − 1
48mq(m(q2 + 2)− 3nq(2n+ 1)),

(C.28)

and also

dim g0 = 1
2qm

2 +
(
n− 1

2mq
)2

+
(
n− 1

2mq
)(

n− 1
2mq + 1

)
,

dim g 1
2

= 2m
(
n− 1

2mq
)
.

(C.29)

Combining all results, the central charge is,

c(W k(sp2n, [qm, 12n−mq])) = −1
2mq((2k +m+ 2n+ 2)q2 − q(6n+m+ 3) + 2n− 2k − 1)

− n(m(n+ 1)− k(2n−m+ 1))
k + n+ 1 .

(C.30)
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[82] D. Gaiotto and M. Rapčák, Vertex Algebras at the Corner, JHEP 01 (2019) 160
[arXiv:1703.00982] [INSPIRE].

– 46 –

https://doi.org/10.1007/978-1-4612-2256-9
https://doi.org/10.1007/978-1-4612-2256-9
https://inspirehep.net/literature/454643
https://doi.org/10.1016/0370-1573(93)90111-P
https://doi.org/10.1016/0370-1573(93)90111-P
https://arxiv.org/abs/hep-th/9210010
https://inspirehep.net/search?p=find+J%20%22Phys.Rept%2C223%2C183%22
https://arxiv.org/abs/1605.00138
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.00138
https://doi.org/10.1007/s00031-012-9196-3
https://arxiv.org/abs/1307.5765
https://arxiv.org/abs/1510.01324
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.01324
https://doi.org/10.1142/S0217751X1340006X
https://arxiv.org/abs/1203.2930
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1203.2930
https://doi.org/10.1007/s00220-003-0926-1
https://arxiv.org/abs/math-ph/0302015
https://doi.org/10.1215/S0012-7094-87-05408-1
https://inspirehep.net/search?p=find+J%20%22Duke%20Math.J.%2C54%2C91%22
https://arxiv.org/abs/1409.8306
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1409.8306
https://arxiv.org/abs/1002.5047
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1002.5047
https://doi.org/10.1088/0305-4470/23/16/002
https://doi.org/10.1088/0305-4470/23/16/002
https://inspirehep.net/search?p=find+J%20%22J.Phys.A%2C23%2CL789%22
https://doi.org/10.1007/s11537-017-1621-x
https://arxiv.org/abs/1604.00893
https://arxiv.org/abs/2102.1346
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.13462
https://arxiv.org/abs/1802.09626
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.09626
https://arxiv.org/abs/1712.03244
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.03244
https://doi.org/10.1016/S0550-3213(96)00552-4
https://arxiv.org/abs/hep-th/9608047
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9608047
https://doi.org/10.1007/s00029-017-0386-7
https://arxiv.org/abs/1702.06089
https://doi.org/10.1093/imrn/rnu277
https://arxiv.org/abs/1004.1554
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1004.1554
https://doi.org/10.4310/ATMP.2009.v13.n3.a5
https://arxiv.org/abs/0807.3720
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0807.3720
https://doi.org/10.1007/JHEP01(2019)160
https://arxiv.org/abs/1703.00982
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.00982


J
H
E
P
0
4
(
2
0
2
1
)
0
7
6

[83] T. Creutzig and D. Gaiotto, Vertex Algebras for S-duality, Commun. Math. Phys. 379 (2020)
785 [arXiv:1708.00875] [INSPIRE].

[84] S. Cecotti, A. Neitzke and C. Vafa, R-Twisting and 4d/2d Correspondences,
arXiv:1006.3435 [INSPIRE].

[85] P.C. Argyres and M.R. Douglas, New phenomena in SU(3) supersymmetric gauge theory,
Nucl. Phys. B 448 (1995) 93 [hep-th/9505062] [INSPIRE].

[86] T. Eguchi, K. Hori, K. Ito and S.-K. Yang, Study of N = 2 superconformal field theories in
four-dimensions, Nucl. Phys. B 471 (1996) 430 [hep-th/9603002] [INSPIRE].

[87] S. Cecotti and M. Del Zotto, Infinitely many N = 2 SCFT with ADE flavor symmetry,
JHEP 01 (2013) 191 [arXiv:1210.2886] [INSPIRE].

[88] D. Collingwood and W. McGovern, Nilpotent orbits in semisimple Lie algebra, Chapman and
Hall/CRC (1993).

– 47 –

https://doi.org/10.1007/s00220-020-03870-6
https://doi.org/10.1007/s00220-020-03870-6
https://arxiv.org/abs/1708.00875
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.00875
https://arxiv.org/abs/1006.3435
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1006.3435
https://doi.org/10.1016/0550-3213(95)00281-V
https://arxiv.org/abs/hep-th/9505062
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9505062
https://doi.org/10.1016/0550-3213(96)00188-5
https://arxiv.org/abs/hep-th/9603002
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9603002
https://doi.org/10.1007/JHEP01(2013)191
https://arxiv.org/abs/1210.2886
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1210.2886

	Introduction
	Known results
	AD theories correspond to W**(k')(g,f) algebras
	AD theories correspond to B(p+1)(g) and W(p+1)(g) algebras

	VOA for AD matter with two non-abelian flavor symmetries
	A(N-1) = sl(N): SU(N) x U(n(1)) flavor symmetry
	New level-rank dualitys
	Conformal embedding in W algebra
	Collapsing levels and decoupling of flavor symmetry

	Classical Lie algebra
	D(N) = so(2N): SO(2N) x Sp(n(1)) flavor symmetry
	Twisted D(N) = so(2N) theory: Sp(2N-2) x SO(n(1)) flavor symmetry
	Twisted sl(2N) theories: SO(2N+1) x Sp(n(1)) flavor symmetry
	Twisted sl(2N+1) theories: Sp(2N) x SO(n(1)+1) flavor symmetry
	Conformal embedding

	Exceptional Lie algebra
	Comments on collapsing levels

	The Higgs branch
	The Higgs branch as the associated variety of the VOA
	The Higgs branch as a quiver variety

	VOA for theories with exact marginal deformations
	Weakly coupled gauge theory descriptions for AD theories
	Theory with Lagrangian description

	More on the conformal embedding
	Conclusion
	Hitchin system descriptions for (G,G') and D(p)(G) theory
	Coulomb branch spectrum from the Newton polygon
	The central charge of W**(k)(g,f)

