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8 Zhu algebra

The ultimate goal of the representation theory of a vertex algebra is to
determine the category of its modules. In this section, we make the first
step towards the goal, but we need to narrow down our attention as well.
Recall that a vertex operator algebra V is Z-graded, but we assume that it
only has non-negative degrees:

V =
∞⊕
n=0

Vn.

We also focus on modules that have a non-negative grading.
In such a setting, we can define an associative algebra A(V ) associated

to V , called the Zhu algebra of V and see that finite-dimensional simple
A(V )-modules and simple V -modules are in one-to-one correspondence up
to isomorphism.
Reference:

• Y. Zhu, “Modular invariance of characters of vertex operator alge-
bras”, J. Amer. Math. Soc. (1996).

8.1 Modules over VOAs

Let (V,1, Y, ω) be a vertex operator algebra. As we have already declared,
V is has a non-negative grading. Recall that we write deg a = n if a ∈ Vn.
Also, for such a homogeneous element a, the corresponding operators have
clear degrees

deg a(n) = deg a− n− 1, n ∈ Z.

To define a module over such a VOA, we require that these degrees of oper-
ators are transferred to a representation space.

Definition 8.1. Let (V,1, Y, ω) be a vertex operator algebra as above. An
N-graded module over V is a module (W,YW ) over V as a vertex algebra
such that the following conditions are satisfied:

• the vector space W is N-graded:

W =

∞⊕
n=0

Wn, dimWn < ∞, n ∈ N, W0 ̸= 0,
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• with respect to this grading, each operator aW(n) has the degree

deg aW(n) = deg a− n− 1,

for a homogeneous a ∈ V .

If M =
⊕∞

n=0Mn and N =
⊕∞

n=0Nn are N-graded V -modules, a mor-
phism f : M → N is a linear map with the following properties:

• for all a ∈ V , w ∈ M , n ∈ Z,

f(aM(n)w) = aN(n)f(w).

• there is k ∈ Z such that f(Mn) ⊂ Nn+k for all n ∈ Z.

The image of a morphism f : M → N is called a submodule of N (so the
category of N-graded modules is closed under quotient). We say that an
N-graded V -module M( ̸= 0) is simple if its submodule is either 0 or M .

By the Jacobi identity, when we set LM
n = ωM

(n+1), n ∈ Z, they form a
representation of the Virasoro algebra on M , but the grading parameter of
M is a priori nothing to do with the eigenvalues of LM

0 , and we do not even
require that LM

0 is diagonalizable in contrast to the VOA itself. However,
for a simple module, the grading something to do with the eigenvalues of
LM
0 .

Theorem 8.2. Let M =
⊕∞

n=0Mn be a simple N-gradable V -module. Then,
there exists h ∈ C such that

LM
0 |Mn = (h+ n)IdMn , n ∈ Z.

Proof. (→ Exercise.)

Example 8.3. Let (F0,1, Y, ω) be the Heisenberg VOA. Recall that the pair
(Fλ, YFλ

) for each λ ∈ C is a module over F0 as a vertex algebra. For each
n ∈ N, let us set

(Fλ)n = Span
{
α−n1 · · ·α−nl

|λ⟩
∣∣∣ l∑
i=1

ni = n
}
.

Then, the pair (Fλ =
⊕∞

n=0(Fλ)n, YFλ
) is a simple N-gradable F0-module.

In fact, from the Jacobi identity, we get

[LFλ
0 , aFλ

(n)] = (deg a− n− 1)aFλ

(n)

for all homogeneous a ∈ V and n ∈ Z. This proves

LFλ
0 |(Fλ)n =

(
λ2

2
+ n

)
IdFλ

, n ∈ N
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and
deg aFλ

(n) = deg a− n− 1

for a homogeneous a ∈ V and n ∈ Z.
A submodule N ⊂ Fλ is preserved by all operators aFλ

(n), a ∈ V , n ∈ Z,
in particular by ĥ. Since Fλ is an irreducible representation of ĥ (Exer-
cise 1.2.3), it must be a simple F0-module as well.

8.2 Zhu algebra and modules

Definition 8.4. Define bilinear maps

∗ : V × V → V, ◦ : V × V → V

by

a ∗ b = [x−1]

(
Y (a, x)

(x+ 1)deg a

x
b

)
,

a ◦ b = [x−1]

(
Y (a, x)

(x+ 1)deg a

x2
b

)
for homogeneous a ∈ V and b ∈ V .

Note that (x+1)deg a is a polynomial in x under our assumption that V
only has non-negative degrees.

Theorem 8.5. Let us set O(V ) = {a ◦ b|a, b ∈ V } and A(V ) = V/O(V ).
Then, we have the following.

(1) (A(V ), ∗) is an associative algebra, i.e.,

O(V ) ∗ V ⊂ O(V ), V ∗O(V ) ⊂ O(V ),

a ∗ (b ∗ c)− (a ∗ b) ∗ c ∈ O(V ), a, b, c ∈ V.

(2) [1] = 1+O(V ) is the unit of (A(V ), ∗).

(3) [ω] = ω +O(V ) is a central element of (A(V ), ∗).

Definition 8.6. The associative algebra (A(V ), ∗) is called the Zhu algebra
of V .

Theorem 8.7. Let M =
⊕∞

n=0Mn be an N-gradable V -module. For a ho-
mogeneous a ∈ V , we write o(a) = aM(deg a−1) and extend the symbol linearly.
Then,

V → End(M0); a 7→ o(a)

induces an action of A(V ) on M0, i.e., o(a)|M0 = 0 for all a ∈ O(V ) and
o(a ∗ b)|M0 = o(a)o(b)|M0 for a, b ∈ V .
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Theorem 8.8. Let W be a finite dimensional A(V )-module. Then, there
exists an N-gradable V -module M =

⊕∞
n=0Mn with the following properties.

(1) M0 ≃ W as A(V )-modules.

(2) If N ⊂ M is a submodule such that N ∩M0 = 0, then N = 0.

Theorem 8.9. Theorems 8.7 and 8.8 induce a one-to-one correspondence
between finite-dimensional simple A(V )-modules and simple N-gradable V -
modules.

Sketch of Proof. Let W be a finite-dimensional A(V )-module. If we apply
Theorem 8.8, we get an N-gradable V -module M =

⊕∞
n=0Mn with M0 ≃ W

as A(V )-modules. Furthermore, if W is simple, then so is M .
Conversely, let us start with an N-gradable V -module M =

⊕∞
n=0Mn.

If we apply Theorem 8.8 to M0, we get an N-gradable V -module M̃ =⊕∞
n=0 M̃n with M̃0 ≃ M0 as A(V )-modules, but we cannot say that M̃ ≃ M .

However, if M is simple, then M0 is simple as a A(V )-module and M̃ is
also a simple module. Furthermore, we can construct a non-zero morphism
M̃ → M , but since they are irreducible, we must have M̃ ≃ M .

8.3 Example: Heisenberg VOA

Theorem 8.10. We have an isomorphism of associative algebras

C[α] ∼−→ A(F0); α 7→ [α−11].

Proof. See

• Frenkel–Zhu, “Vertex operator algebras associated to representations
of affine and Virasoro algebras”, Duke Math. J. (1992).

(The Heisenberg algebra is an affine Lie algebra.)

Since C[α] is commutative, finite-dimentional simple C[α]-modules are
all one-dimensional. They are labelled by λ ∈ C: for each λ ∈ C, the
one-dimensional space Cλ = C is equipped with the action of C[α],

α 7→ λ · Id.

On the other hand, [α−11] ∈ A(F0) acts on (Fλ)0 = C |λ⟩ by λ·Id. Therefore,
Cλ and Fλ correspond to each other under Theorem 8.9.
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8.4 Example: Virasoro VOA

8.4.1 Universal Virasoro VOA

Recall that the Virasoro VOA of central charge c is built on

Vc = U(vir)/
( ∑

n≥−1

U(vir)Ln + U(vir)(C − c)
)

and the Verma modules

M(c, h) = U(vir)/
(∑

n>0

U(vir)Ln + U(vir)(L0 − h) + U(vir)(C − c)
)

are modules over Vc as a vertex algebra. It is not difficult to see that
they are N-gradable Vc-modules, but are not necessarily simple (in contrast
to the Heisenberg case). In fact, for a certain choice of (c, h), the Verma
module M(c, h) is reducible as a representation of the Virasoro algebra,
hence cannot be simple as Vc-module. (The Vc action goes through the
action of the Virasoro algebra.) Nevertheless, we can always take the simple
quotient of M(c, h) and write it as L(c, h).

Theorem 8.11. There is an isomorphism of associative algebras

C[h] ∼−→ A(Vc); h 7→ [ω].

Proof. See Frenkel–Zhu (1992), or

• W. Wang, “Rationality of Virasoro vertex operator algebras” Interna-
tional Mathematics Research Notices (1993).

Exactly by the same reasoning as the Heisenberg case, we can conclude
that L(c, h), h ∈ C are all of the simple N-gradable Vc-modules.

8.4.2 Minimal Virasoro VOA

The representation Vc of the Virasoro algebra is not always irreducible, or
in other words, it is not a simple VOA. It is known from the representation
theory of the Virasoro algebra, when we set

c = cp,q = 1− 6
(p− q)2

pq
, p, q ∈ {2, 3, . . . } : coprime,

Vc is reducible, and its maximal proper submodule is generated by a singular
vector vp,q ∈ (Vc)(p−1)(q−1). For this fact, see

• Iohara–Koga, “Representation theory of the Virasoro algebra”, (2011).
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Let us write Lc for the simple quotient. As the formula of cp,q is symmetric
under exchanging p and q, we may assume p < q. If (p, q) = (2, 3), vp,q lives
in (Vc)2, which is spanned by L−21c and Lc is the trivial representation.
Usually, we exclude this case. The submodule generated by vp,q is also an
ideal of the VOA Vc, hence Lc is still a VOA. The simple VOA Lc with some
c = cp,q is called a minimal Virasoro VOA.

From the general theory of the Zhu algebra, the Zhu algebra A(Lc) is
the following quotient of A(Vc):

A(Vc)/([vp,q]).

It can be shown (Wang, 1993) that, under the identification C[h] ≃ A(Vc),
we can take a polynomial Gp,q(h) of degree

1
2(p− 1)(q− 1) as a generator of

the ideal.

Theorem 8.12 (Wang). The following polynomial works as a generator of
the ideal:

Gp,q(h) =
( p−1∏

r=1

q−1∏
s=1

(h− hr,s)
)1/2

,

where

hr,s =
(sp− rq)2 − (p− q)2

4pq
, r, s ∈ Z.

Exercise 8.1. Show that Gp,q(h) is a polynomial.

Corollary 8.13. The minimal Virasoro VOA Lcp,q has 1
2(p − 1)(q − 1)

number of simple N-gradable modules, and they are covered by

L(cp,q, hr,s), r = 1, . . . , p− 1, 1 ≤ s <
q

p
.

Example 8.14 ((p, q) = (3, 4)). The central charge is c = 1
2 . The VOA Lc

itself is a simple N-gradable module, so we of course have

h1,1 = h2,3 = 0.

The other non-trivial modules have the conformal weights

h2,1 = h1,3 =
1

2
and h2,2 = h1,2 =

1

16
.

Consequently, the polynomial G3,4(h) is

G3,4(h) = h
(
h− 1

2

)(
h− 1

16

)
.
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8.5 Proof of Theorem 8.8 (Sketch)

It is instructive to see the following for an N-gradable V -module. Let
(M,YM ) be an N-gradable V -module. We suppress M from the notation
if there is no confusion. According to the direct sum M =

⊕∞
n=0Mn, a

functional φ ∈ M∗
0 is naturally extended to the whole M .

Lemma 8.15. For any a1, . . . , an ∈ V , w ∈ M0, and φ ∈ M∗
0 , we have〈

φ, Y (a1, x1)Y (a2, x2) . . . Y (an, xn)w
〉

=
〈
o(a1)∗φ, Y (a2, x2) . . . Y (an, xn)w

〉
+

n∑
k=2

∞∑
i=0

ι1kFdeg a1,i(x1, xk) ·
〈
φ, Y (a2, x2) · · ·Y (a1(i)a

k, xk) · · ·Y (an, xn)w
〉
,

where

Fn,i(x, y) = x−n∂(i)
y

yn

x− y
∈ C[x, y][x−1, y−1, (x− y)−1]

for n, i ∈ N.

Proof. (→ Exercise)

Notice that, in this formula, the right-most M0 and left-most M∗
0 are

preserved, but the number of Y inserted in the matrix element is reduced
by one. Therefore, we can recover the matrix element〈

φ, Y (a1, x1)Y (a2, x2) . . . Y (an, xn)w
〉

only from the knowledge of the top space M0.
The proof of Theorem 8.8 goes as follows.

Step 1: We fist construct functionals

S : W ∗ ⊗ V ⊗n ⊗W → C[x1, . . . , xn][x−1
i , (xi − xj)

−1]

that pretend matrix elements by recursion in n.
For n = 0, there is a natural pairing

S = ⟨−,−⟩ : W ∗ ⊗W → C.

Assuming that S is defined up to n−1, we define, for a1, . . . , an ∈ V , w ∈ W
and φ ∈ W ∗,

S(φ, (a1, x1)(a
2, x2) · · · (an, xn)w)

=S(o(a1)∗φ, (a2, x2) . . . (a
n, xn)w)

+
n∑

k=2

∞∑
i=0

Fdeg a1,i(x1, xk) · S(φ, (a2, x2) · · · (a1(i)a
k, xk) · · · (an, xn)w).
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Step 2: It can be shown that the functions S satisfy the following property:∫
Ck+1

S(φ, · · · (ak−1, xk−1)(a
k, xk) · · ·w)(xk−1 − xk)

ndxk−1

=S(φ, · · · (ak−1
(n) a

k, xk) · · ·w) (8.1)

for any k. Here Ck is an integral contour that encloses only xk, but not
others nor 0.

xk

Ck

0 x1 · · · xk−2 xk+1 · · ·

We omitted the numerical factor 1
2πi

from the integral.
Step 3: We define M by the formal span

M = Span
{
b1(i1) · · · b

l
(il)

w
∣∣∣b1, . . . , bl ∈ V, i1, . . . , il ∈ Z, w ∈ W

}
and extend S to W ∗ ⊗ V ⊗n ⊗M as follows: for

m = b1(i1) · · · b
l
(il)

w,

we set

S(φ, (a1, x1) · · · (ak, xk)m)

=

∫
C1

· · ·
∫
Cl

S(φ, (a1, x1) · · · (ak, xk)(b1, y1) · · · (bl, yl)w)yii1 · · · yill dy1 · · · dyl.

Here, each yi is integrated along Ci that encloses 0 and all Cj of j > i. The
points x1, . . . , xk are outside these contours.

0
Cl

· · ·

C1

x1 · · · xk

It is clear that (8.1 still holds even if we replace w ∈ W with m ∈ M :∫
Ck+1

S(φ, · · · (ak−1, xk−1)(a
k, xk) · · ·m)(xk−1 − xk)

ndxk−1

=S(φ, · · · (ak−1
(n) a

k, xk) · · ·m). (8.2)
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Step 4: We define

Rad(M) =
{
m ∈ M

∣∣∣S(φ, (a1, x1) · · · (an, xn)m) = 0, for all φ∈W ∗,
a1,...,an∈V, n∈N

}
and

M = M/Rad(M).

It is clear that Rad(M) is stable under adding a symbol a(n), a ∈ V , n ∈ Z
on the left. Therefore, if we define

YM (a, x) =
∑
n∈Z

a(n)x
−n−1

for a ∈ V , it is considered in End(M)[[x±1]].
The claim is, of course, that the pair (M,YM ) is the desired N-gradable

V -module. Proving that requires few extra works, but most importantly,
(8.2) implements the property

YM (a(n)b, x) = YM (a, x)(n)YM (b, x), a, b ∈ V, n ∈ Z

on M .
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