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1 Formal Power Series

1.1 One Variable

Let an ∈ U , U some vector space. Define formal power series

a(z) =
∑
n∈Z

anz
n . (1.1)

Clearly these form a vector space, which we denote by U [[z, z−1]]. We denote formal
Laurent polynomials as U [z, z−1]. We will also encounter U [[z]][z−1]. Sometimes these
are called formal Laurent series, and are denoted by U((z)). (The logic of the notation
is that [[z]] denotes infinitely many non-negative powers in z, and [z] only finitely many
non-negative powers.) For λ ∈ C we define u(λz) :=

∑
n∈Z λ

nunz
n.

Example: ‘multiplicative δ-distribution’

δ(z) :=
∑
n∈Z

zn (1.2)

Let us now take U to be an associative algebra with unit 1, so that multiplication is
defined. In practice, we will work with two types of examples:

• U = End(V ) for some vector space V .

• U = C
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We now want to try to define a multiplication of formal power series:

a(z)b(z) =
∑
n∈Z

cnz
n cn =

”∞”∑
”k=−∞”

akbn−k (1.3)

This product of two formal series is in general not well defined, since the infinite sum
is only defined if it is secretly a finite sum! (Remember that we are doing algebra, and
have no concept of convergence.) Multiplication therefore only works in some cases.
An example that fails is for instance δ(z)δ(z). We can for example multiply by Laurent
polynomials: f(z)u(z) ∈ U [[z, z−1]] if f(z) ∈ U [z, z−1].

Proposition 1.1. For f(z) ∈ U [z, z−1],

f(z)δ(z) = f(1)δ(z)

Exercise 1.1. Define

(1− z)−1 :=
∑
n≥0

zn (1.4)

Show: (1− z)−1(1− z) is well-defined and = 1.

General criterion: a1(z)a2(z) · · · ak(z) exists if for all n the set

In = {(n1, . . . , nk) : n1 + n2 + . . .+ nk = n, a1
n1
a2
n2
· · · aknk

6= 0} ⊂ Zn (1.5)

only has finitely many elements. We then set

a1(z)a2(z) · · · ak(z) = b(z) with bn =
∑

(n1,...,nr)∈In

a1
n1
a2
n2
· · · aknk

(1.6)

We then say that the product exists, or is well-defined, or that it is summable. Typ-
ical example that works: multiplying formal Laurent series a(z), b(z) ∈ U [[z]][z−1] :
a(z)b(z) ∈ U [[z]][z−1].

Usually it is pretty obvious when we are illegally trying to multiply formal power
series, since we get manifestly infinite sums. Sometimes things can go wrong in a more
subtle manner, as in the following apparent paradox:

δ(z) = 1δ(z) = (1− z)−1(1− z)δ(z) = (1− z)−1 · 0 = 0 (1.7)

What went wrong here?

Exercise 1.2. If a(z)b(z), b(z)c(z) and a(z)b(z)c(z) all exist, then (a(z)b(z))c(z) =
a(z)(b(z)c(z)) = a(z)b(z)c(z).

We can define derivatives,

∂za(z) :=
∑
n∈Z

(n+ 1)an+1z
n , (1.8)
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and residues,
Resza(z) := a−1 . (1.9)

We can solve differential equations:

Lemma 1.2. R(z) ∈ U [[z]], initial value f0. Then

∂zf(z) = R(z)f(z)

has a unique solution with f(z) ∈ U [[z]] and with intial data f0, i.e. f(z) = f0 +O(z).

Proof. Recursion (Lemma 4.1 in [1]).

1.2 Multiple variables

Similar definition, e.g. for two variables:

a(z, w) =
∑
n,m∈Z

an,mz
nwm ∈ U [[z, z−1, w, w−1]] (1.10)

Multiplication of two different variables is fine: a(z)b(w) ∈ U [[z, z−1, w, w−1]]. We
define the binomial expansion convention:

(z + w)n =
∞∑
k=0

(
n

k

)
zn−kwk ∈ U [[z, z−1, w]] (1.11)

Note that for n < 0, (z +w)n 6= (w + z)n! Sometimes people use the notation ιz,w(z +
w)n := (z + w)n, ιw,z(z + w)n := (w + z)n

Exercise 1.3. Show

• (z + w)n(z + w)−n = 1

• (1− z)−1 − (−z + 1)−1 = δ(z)

We can use this to ‘shift’ the argument of power series to get:

a(z + w) ∈ U [[z, z−1, w]] (1.12)

(Proof: znwm has only one contribution, only for m ≥ 0.) We can ‘set w = 0’, that is
extract the term w0, to get back a(z + 0) = a(z).

We can now work with the δ function in two variables, δ(z/w). (Note that there
is a clash of notation with [1]! We are using multiplicative notation, and also differ
by a factor of w.) We can now multiply by any power series in z, not just Laurent
polynomials:

f(z)δ(z/w) = f(w)δ(z/w) ∀f(z) ∈ U [[z, z−1]] . (1.13)

Some more useful properties of the delta distribution:
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Proposition 1.3. δ satisfies the following properties:

1. ∀f(z) ∈ U [[z, z−1]] : Reszf(z)w−1δ(w/z) = f(w)

2. δ(z/w) = δ(w/z)

3. (z − w)∂j+1
w δ(w/z) = (j + 1)∂jwδ(w/z)

4. (z − w)j+1∂jwδ(w/z) = 0

Proof. Exercise.

2 Fields and Locality

2.1 Fields

From now on we will fix U = End(V ). In that case, note that for multiplications to
exist, a weaker condition than (1.5) can be imposed: It is enough that for every v ∈ V ,

Ivn = {(n1, . . . , nk) : n1 + n2 + . . .+ nk = n, a1
n1
a2
n2
· · · aknk

v 6= 0}

only has finitely many elements. a1(z)a2(z) · · · ak(z) is then a well defined element of
End(V )[[z, z−1]], since

∑
a1
n1
a2
n2
· · · aknk

v is a finite sum for all v.
Just to annoy everybody, we now switch conventions.

Definition 2.1. A formal power series

a(z) =
∑
n∈Z

anz
−n−1 ∈ End(V )[[z, z−1]] (2.1)

is called a field if for all v ∈ V there is a K (sometimes called the order of truncation
of a on v) such that

anv = 0 ∀n ≥ K . (2.2)

An equivalent (and sometimes more useful) definition is that ∀v ∈ V , a(z)v ∈
V [[z]][z−1]. That is, a(z) ∈ Hom(V, V [[z]][z−1]). We will call the space of fields E(V ).
Note: ∂a(z) is again a field, so E(V ) is closed under taking derivatives.

We now want to define a multiplication on E(V ). To do this, we first need to define
the notion of normal ordering. For a(z) =

∑
n∈Z anz

−n−1 define the ‘annihilation’ and
‘creation’ part as

a(z)− =
∑
n≥0

anz
−n−1 a(z)+ =

∑
n<0

anz
−n−1 .

Note: We choose this particular definition to ensure that (∂a(z))± = ∂(a(z)±). We can
then define the normal ordered product:

:a(z)b(w) : := a(z)+b(w) + b(w)a(z)− (2.3)
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On the level of modes this means

:ambn : =

{
ambn : m < 0
bnam : m ≥ 0

(2.4)

Note: The normal ordered product is neither associative nor commutative! We have
∂z :a(z)b(w) :=:∂za(z)b(w) :.

Proposition 2.1. Let a(z), b(z) be fields. Then : a(z)b(z) : is well-defined and is a
field.

Proof. a(z)+b(z)v ∈ End(V )[[z]]V [[z]][z−1] ⊂ V [[z]][z−1]. a(z)−v ∈ V [z−1], that is a
finite linear combination of terms. So by linearity we have b(z)a(z)−v ∈ V [[z]][z−1].

⇒ E(V ) is a (non-commutative, non-associative) algebra closed under derivatives

Lemma 2.2.

: a(w)b(w) := Resz
(
a(z)b(w)(z − w)−1 − b(w)a(z)(−w + z)−1

)
Proof.

Resza(z)(z − w)−1 = a(w)+ Resza(z)(−w + z)−1 = −a(w)− (2.5)

It turns out to be useful to define a whole family of normal ordered products. We
can generalize for n ∈ Z,

a(w)nb(w) := Resz(a(z)b(w)(z − w)n − b(w)a(z)(−w + z)n) (2.6)

Note for n ≥ 0, we have a(w)−n−1b(w) = 1
n!

:∂na(w)b(w) : (Take derivatives ∂nz in (2.5),
use Resz(∂zf(z)) = 0).

Lemma 2.3. For all n ∈ Z, a(w)nb(w) is well defined and a field.

Proof. For n < 0, this follows from 2.1. For n ≥ 0, apply both terms to v ∈ V . We can
neglect the polynomial (z −w)n which only gives a finite linear combination of shifted
terms. First term: a0b(w)v ∈ V [[w]][w−1]. Second term: b(w)a0v ∈ V [[w]][w−1].

We also have

Lemma 2.4.
∂w(a(w)nb(w)) = ∂a(w)nb(w) + a(w)n∂b(w)

Proof. Exercise.
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2.2 Locality

We say a(z) and b(z) are mutually local if ∃K > 0 such that

(z − w)K [a(z), b(w)] = 0 (2.7)

K is sometimes called the order of locality. One might be tempted to multiply by
(z − w)−K and conclude that the commutator vanishes. This however is in general
illegal. In fact, we know from prop 1.3 that δ distributions are counterexamples. All
counterexamples are of this form:

Theorem 2.5. Let f(z, w) ∈ U [[z, z−1, w, w−1]] be such that (z−w)Kf(z, w) = 0. We
can then write

f(z, w) =
K−1∑
j=0

cj(w)
1

j!
z−1∂jwδ(z/w) ,

where the series cj(w) are given by

cj(w) = Reszf(z, w)(z − w)j .

Proof. Define b(z, w) := f(z, w) −
∑K−1

j=0 cj(w)z−1 1
j!
∂jwδ(z/w). We have Resz(z −

w)nb(z, w) = 0 for all n ≥ 0: For n ≥ K, both terms in the definition of b give
zero by 4 in prop 1.3. For n < K we can evaluate Resz. Both contributions cancel
by using 3 in prop 1.3. Next write b(z, w) =:

∑
n∈Z an(w)zn. By taking Resz with

n = 0 we conclude that a−1(w) = 0. From this and taking Resz with n = 1 we
conclude a−2(w) = 0 etc. b(z, w) thus only contains non-negative powers of z. Since
(z − w)Kb(z, w) = 0, it then follows that b(z, w) = 0, establishing the claim.

It follows that we can write

[a(z), b(w)] =
K−1∑
j=0

(a(w)jb(w))
1

j!
z−1∂jwδ(z/w) (2.8)

If a(z) and b(z) are mutually local, then so are ∂a(z) and b(z). (To see this, take
derivative of (2.7) and multiply by (z − w).) We want to establish the analogue of
lemma 2.3 for local fields, i.e. establish that local fields form an algebra under normal
products. The following Lemma due to Dong does that:

Lemma 2.6 (Dong). If a(z), b(z) and c(z) are pairwise mutually local, then a(z)nb(z)
and c(z) are mutually local.

Proof. As in 5.5.15 in [2].

(In particular: : a(z)b(z) : and c(z) are mutually local.) Local fields and their
derivatives thus form an algebra under the normal ordered product!
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2.3 Heisenberg algebra

Let us now construct an explicit example of a local field. To do this, we need to take
a brief detour to the theory of Lie algebras and their universal enveloping algebras.

Definition 2.2. Lie algebra: g vector space. A bilinear map [·, ·]g : g× g→ g is a Lie
bracket if

1. [a, b]g = −[b, a]g (antisymmetry)

2. [a, [b, c]g]g + [c, [a, b]g]g + [b, [a, c]g]g = 0 (Jacobi identity)

The pair (g, [·, ·]g) is called a Lie algebra.

Typical example:

Exercise 2.1. Let g be some associative algebra. Check: [a, b]g := [a, b] = ab − ba
defines a Lie bracket.

Heisenberg algebra: h is spanned by the basis vectors αn, n ∈ Z and the central
element k. The Lie bracket is defined as

[αm, αn]h = mδm+n,0k , [αm,k]h = [k, αm]h = [k,k]h = 0 . (2.9)

Exercise 2.2. Show this is a Lie algebra.

We now want to turn a Lie algebra into an (associative) algebra.

Definition 2.3. g Lie algebra. Its tensor algebra is given by

T (g) :=
⊕
i≥0

g⊗i = C⊕ g⊕ (g⊗ g)⊕ . . .

Its universal enveloping algebra U(g) of g is the associative algebra

U(g) := T (g)/I

where the ideal I is given by

I = 〈a⊗ b− b⊗ a− [a, b]g : a, b ∈ g〉

This simply means that we are modding out by the relation a⊗b−b⊗a− [a, b]g ∼ 0.
Note: In the future we will simply write ab for a⊗b. U(h) will be the associative algebra
for defining our fields.

We now want to turn U(h) into some subalgebra of End(V ) for some vector space
V . To this end, we first construct the Fock space V . Decompose h = h+⊕h0⊕h− with

h+ =
⊕
n>0

Cαn h− =
⊕
n<0

Cαn h0 = Cα0 ⊕ Ck . (2.10)
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Note that the Lie bracket restricted to the individual subspaces vanishes. In particular
we have U(h−) ' S(h−), i.e. the (commutative!) algebra of polynomials in the variables
{αn : n < 0}. Define the Fock space V in the following way. Take the ’vacuum vector’
|0〉 and define the action of h≥0 = h+ ⊕ h0 as

k|0〉 = |0〉, αn≥0|0〉 = 0 . (2.11)

Then define
V := U(h)⊗U(h≥0) (C|0〉) ' S(h−) . (2.12)

(Here ⊗U means that au⊗U b = a⊗U ub for u ∈ U .) U(h) then acts on V by multipli-
cation from the left, i.e. U(h) ⊂ End(V ).

Operational Summary: We have

• an associative algebra generated by αm satisfying (2.9)

• the Fock space V spanned by vectors

α−n1 · · ·α−nk
|0〉 , ni > 0

generated from the vacuum vector |0〉 by acting with operators α−n

• the αn act on V by multiplying from the left, with k = 1 and αn≥0|0〉 = 0.

Proposition 2.7. The Heisenberg field (or free boson) α(z) :=
∑

n αnz
−n−1 ∈ End(V )[[z, z−1]]

acting on the Fock space V is a (self-)local field.

Proof. • Field: note that V has grading (‘weights’) given by wt (α−n1 · · ·α−nk
|0〉) =:∑

i ni, and αn changes the weight by −n. WLOG v homogeneous. Since there
are no states of negative weight, αnu = 0 for n large enough.

• Local:
[α(z), α(w)] =

∑
m

mzm−1w−m−1 = w−1∂zδ(z/w)

From prop 1.3: (z − w)2∂zδ(z/w) = 0.

3 Vertex Algebras

3.1 Definition of a vertex algebra

Definition 3.1. A vertex algebra is a vector space V with a distinguished vector |0〉 6= 0
(vacuum vector), an endomorphism T ∈ End(V ) (translation operator) and a linear
map Y from V into the space of fields E(V ) (state-field map)

a 7→ Y (a, z) =
∑
n∈Z

anz
−n−1
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such that the following axioms hold:

VA1 Y (a, z)|0〉 = a+O(z) (creativity)

VA2 [T, Y (a, z)] = ∂Y (a, z) and T |0〉 = 0 (translation covariance)

VA3 For all a and b, Y (a, z) and Y (b, z) are mutually local (locality)

Remark: From VA1 and VA2 it follows that the translation operator is given by
Ta = a−2|0〉. We will also see below that Y (|0〉, z) = IV , the identity on V .

We want to turn our Heisenberg algebra into a vertex algebra. Clearly we want
to define Y (α, z) = Y (α−1|0〉) := α(z). What about more general states in the Fock
space V such as Y (α−1α, z)? It turns out that there is no choice: their fields are
uniquely determined. To show this and find the correct expression, we need to show a
few propositions first.

Proposition 3.1. 1. Y (a, z)|0〉 = ezTa

2. ezTY (a, w)e−zT = Y (a, w + z)

3. ezTY (a, w)±e
−zT = Y (a, w + z)±

Proof. Show that both sides satisfy the same differential equation, then apply lemma 1.2

Proposition 3.2 (Skewsymmetry). Y (a, z)b = ezTY (b,−z)a

Proof. Using locality with proposition 3.1 gives

(z − w)KY (a, z)ewT b = (z − w)KY (b, w)ezTa .

Now apply proposition 3.1 to get

(z − w)KY (a, z)ewT b = (z − w)KezTY (b, w − z)a

We want to obtain the result by ‘setting w = 0’ and then dividing by zK . This we can
do if we choose K large enough, since then everything is in (EndV )[[z, z−w]][z−1].

Corollary 3.3.
Y (|0〉, z) = IV

Proof. For all b we have Y (|0〉, z)b = ezTY (b,−z)|0〉 = ezT e−zT b = b.

Theorem 3.4 (Uniqueness). Let B(z) be field that is local with respect to all fields in
{Y (a, z) : a ∈ V }. Suppose for some b ∈ V

B(z)|0〉 = ezT b .

Then B(z) = Y (b, z).
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Proof. Locality gives

(z − w)KB(z)Y (a, w)|0〉 = (z − w)KY (a, w)B(z)|0〉

which we can write as

(z − w)KB(z)ewTa = (z − w)KY (a, w)ezT b = (z − w)KY (a, w)Y (b, z)|0〉

Choosing K large enough, we can apply locality to the RHS to get

(z − w)KB(z)ewTa = (z − w)KY (b, z)ewTa

Since both sides only contain positive powers of w, we can set w = 0 and divide by zK

to get B(z)a = Y (b, z)a for all a, establishing the claim.

Using all this, we are now in a position to prove a central result, which allows to
evaluate fields recursively:

Proposition 3.5.
Y (anb, z) = (Y (a, z)nY (b, z)) (3.1)

Proof. Define B(z) := Y (a, z)nY (b, z). The idea is of course to use theorem 3.4 to show
that B(z) = Y (anb, z). To do this, first note that by Dong’s Lemma B(z) is indeed
local. Next we want to show B(z)|0〉 = ezTanb by using differential equations. First
note that from (2.6)

B(z)|0〉 = anb−1|0〉+O(z) . (3.2)

Both sides of (3.1) thus satisfy the same initial condition. They also satisfy the same
differential equation

∂zf(z) = Tf(z) .

For Y (anb, w) this is immediate. For Y (a, z)nY (b, z) this follows that from Lemma 2.4
and the fact that commutators satisfy the Leibniz rule. By Lemma 1.2 they thus agree.
It then follows by theorem 3.4 that indeed Y (anb, z) = B(z).

Remembering definition (2.6) gives a very useful and explicit formula to evaluate
fields coming from general states:

Y (anb, w) = Resz(Y (a, z)Y (b, w)(z − w)n − Y (b, w)Y (a, z)(−w + z)n) (3.3)

As immediate corollaries we can write:

Corollary 3.6.

[Y (a, z), Y (b, w)] =
K−1∑
j=0

Y (ajb, w)
1

j!
z−1∂jwδ(z/w) (3.4)
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Corollary 3.7.

Y (a1
−j1 · · · a

n
−jn|0〉, z) = :

1

(j1 − 1)!
∂j1−1Y (a1, z) · · · 1

(jn − 1)!
∂jn−1Y (an, z) : (3.5)

Y (Ta, z) = ∂Y (a, z) (3.6)

Corollary 3.8 (Locality-Truncation Relation). Let a, b ∈ V , K > 0. The two following
statements are equivalent:

1. (z − w)K [a(z), b(w)] = 0

2. anb = 0 ∀n ≥ K.

Proof. ⇒: Use (3.3) and injectivity of Y . ⇐: Use (2.8) and prop 3.5.

3.2 An Example: Heisenberg VA

We are now ready to show that the Heisenberg fields form a vertex algebra.
To construct the Heisenberg VA, we take V to be the Fock space (2.12), with |0〉

the vacuum. We define the translation operator as

T :=
1

2

∑
n∈Z

αnα−1−n . (3.7)

Note that even though this is formally an infinite sum, T is well-defined on V , since for
any a ∈ V only finitely many terms are non-vanishing. Finally we define the state-field
map Y as (the linear extension of)

Y (αj1αj2 · · ·αjn|0〉, z) := α(z)j1(α(z)j2(· · · (α(z)jnIV )) (3.8)

From Lemma 2.3 these are indeed fields.
Let us check that this indeed satisfies the three axioms of a vertex algebra:

VA1: Creativity is ensured by applying a(z)nb(z)|0〉 = anb + O(z) (see (3.2)) recur-
sively.

VA2: To check translation covariance, note first that with our definition of T , T |0〉 = 0.
Next, a straightforward computation shows that

[T, α(z)] =
1

2

∑
n,m∈Z

[αnα−1−n, αmz
−m−1] =

1

2

∑
n,m∈Z

(α−1−nnδn+m,0 + (−1− n)αnδ−1−n+m,0) z−m−1

=
1

2

∑
m∈Z

−2mαm−1z
−m−1 = ∂α(z) (3.9)

To show that this also holds for general fields Y , we apply Lemma 2.4 and the
fact that commutators satisfy the Leibniz rule.
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VA3: Locality, is actually the easiest to check: Dong’s Lemma ensures that all Y (a, z)
are mutually local, since α(z) is already local.

This establishes that V is indeed a vertex algebra. It is clear that we can generalize
this construction:

Theorem 3.9 (Existence). Let V be a vector space, |0〉 a vector, T an endomorphism.
Let {aα(z)}α∈A (A some index set) a local set of fields satisfying

1. [T, aα(z)] = ∂aα(z)

2. T |0〉 = 0

3. aα(z)|0〉 ∈ V [[z]] and with aα := aα(z)|0〉z=0 the linear map
∑

αCaα(z) →∑
αCaα defined by aα(z) 7→ aα is injective

4. the vectors aα1
j1
aα2
j2
· · · aαn

jn
|0〉 with js ∈ Z−, αs ∈ A span V .

Then the map

Y
(
aα1
j1
aα2
j2
· · · aαn

jn
|0〉, z

)
:= aα1(z)j1(a

α2(z)j2(· · · (aαn(z)jnIV )) (3.10)

defines a vertex algebra (V, T, |0〉, Y ).

Proof. See Theorem 4.5 in [1]. Idea: Choose basis of aα. 3 makes (3.10) well defined.
Use Dong’s lemma for locality. Both ∂ and [T, ·] are derivatives wrt normal ordered
product.

3.3 Jacobi identity

Let us discuss some more structural aspects of vertex algebras. In particular, there are
other equivalent definitions of VAs.

First let us address the question: In what sense is a vertex algebra actually an
algebra?

Note that we can consider the formal power series Y (a, z)b as a generating function
of an infinite list of product operations ∗n : V × V → V , a ∗n b := anb. Are these
products commutative, i.e.

anb = bna ? (3.11)

A quick look at e.g. Proposition 3.2 implies that they are not. Are they associative,
i.e. do we have something like

an(bmc) = (anb)mc ? (3.12)

Again, they are not, as e.g. (3.3) shows.
The situation is however not quite as bad as it seems. Locality implies that two

fields almost commute, i.e. they commute once we multiply with a factor. Locality is
therefore sometimes also called weak commutativity, Similarly one can show that fields
of a VA satisfy weak associativity :

13



Proposition 3.10 (Weak associativity). For all a, c ∈ V ∃k (depending only on a and
c, not on b!) such that for any b

(z + w)kY (a, z + w)Y (b, w)c = (z + w)kY (Y (a, z)b, w)c

A slightly different point of view is given by identities of the form (3.3): They imply
that non-commutativity and non-associativity are related somehow. That is, there is
an infinite number of identities that the products ∗n have to satisfy. In fact, using the
language of formal power series as generating functions, we can write the totality of
these identities in the form of the so-called Jacobi identity :

Proposition 3.11 (Jacobi Identity, VA4). For any three a, b, c in a vertex algebra V
we have

z−1
0 δ

(
z1 − z2

z0

)
Y (a, z1)Y (b, z2)− z−1

0 δ

(
z2 − z1

−z0

)
Y (b, z2)Y (a, z1)

= z−1
2 δ

(
z1 − z0

z2

)
Y (Y (a, z0)b, z2) (3.13)

All terms of this expression are well-defined. One way to see this is to explicitly
expand out (3.13) and read off the coefficient of say z−l−1

0 z−m−1
1 z−n−1

2 , giving∑
i≥0

(−1)i
(
l

i

)
(al+m−ibn+i − (−1)lbl+n−iam+i) =

∑
i≥0

(
m

i

)
(al+ib)m+n−i (3.14)

Since a, b, c are fields, the sums over i are actually finite. This is how we obatin the
promised infinite list of identities. (3.14) is called the Borcherds identity, and from
what we have said it is clearly equivalent to the Jacobi identity (3.13).

Why do we call it the Jacobi identity? It is indeed a generalization of the Jacobi
identity of Lie algebras. To see this, write the adjoint action of u on v as (adu)v :=
[u, v]g. The Jacobi identity is then

(adu)(adv)− (adv)(adu) = ad((adu)v) , (3.15)

which is exactly of the form (3.13). (In fact, (3.15) is a special case of (3.13).)

Proof. (Sketch) Indeed one can show (see theorem 4.8 of [1]) that translation and
locality imply (3.14). The components of the proof are (3.4) written as

[am, Y (b, w)] =
∑
j≥0

(
m

j

)
Y (ajb, w)wm−j , (3.16)

and corollary 3.7. These are two special cases of (3.14), and it turns out that combining
them is enough to establish the general case of (3.14), which then in turn is equivalent
to (3.13).
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In the context of a vertex algebra, we have thus shown that VA1, VA2, VA3
⇒ VA4. In fact, one can show that the converse holds: VA1, VA4 ⇒ VA2, VA3:
Starting from (3.13), locality holds: Multiply (3.13) by zk0 , k > 0 and take Resz0 to get

(z1 − z2)kY (a, z1)Y (b, z2)− (z1 − z2)kY (b, z2)Y (a, z1) =

Resz0z
k
0z
−1
2 δ

(
z1 − z0

z2

)
Y (Y (a, z0)b, z2) (3.17)

Note that on the right hand side, δ only produces positive powers of z0, so that the
only negative powers of z0 come from Y (a, z0)b ∈ V [[z]][z−1]. This means that if we
choose k large enough, the residue vanishes, establishing locality VA3.

Moreover one then defines Ta := a−2|0〉, and one can show that this then satisfies
the commutator equation of the translation axiom VA2.

In conclusion, in the definition of a vertex algebra we can replace axioms VA2 and
VA3 by VA4. In practice we will use locality, since that is usually easier to show
using constructions theorems like theorem 3.9. In some cases (such as the definition of
modules) using the Jacobi axiom (3.13) is more natural though.

4 Conformal invariance

5 Vertex Operator Algebras

Definition 5.1 (Vertex Operator Algebra (“Conformal Vertex Algebra”)). Let V be
Z graded vector space

V =
⊕
n∈Z

V(n) with dimV(n) <∞ , V(n) = 0 for n small enough ,

where for v ∈ V(n), n = wt v (the weight of v). A Vertex Operator Algebra is
V equipped with a vertex algebra structure (V, Y, |0〉, T ) together with a distinguished
vector ω (the conformal vector)

Y (ω, z) =
∑
n∈Z

Lnz
−n−2

(
=
∑
n∈Z

ωnz
−n−1

)
, (5.1)

satisfying the following axioms:

VOA1 The Virasoro modes Ln satisfy the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
1

12
m(m2 − 1)δm+n,0cV . (5.2)

Here cV ∈ C is the central charge. (conformal symmetry)

VOA2 L0v = wt (v)v (conformal weight)
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VOA3 T = L−1 (translation generator)

Let us list a few immediate consequences of these axioms:

• We can replace the requirement T = L−1 by the weaker requirement Y (L−1a, w) =
∂Y (a, w). To see this, use (3.16) to get

Y (L−1a, w) = Y (ω0a, w) = [L−1, a(w)] . (5.3)

• From VA1 it follows that

Ln|0〉 = 0 ∀n ≥ −1 . (5.4)

• In particular from L0|0〉 = 0 it follows that |0〉 ∈ V(0).

• We also have
L0ω = L0L−2|0〉 = [L0, L−2]|0〉 = 2ω , (5.5)

so that ω ∈ V(2).

Lemma 5.1. Let a ∈ V(wt a), i.e. a homogeneous of weight wt a. Then the mode an
(defined from Y (a, z) =

∑
n anz

−n−1 maps

an : Vm → Vm+wt a−n−1 , (5.6)

i.e. an is a homogeneous operator of weight wt an = wt a− n− 1.

Proof. Use (3.16) to obtain

[L0, a(w)] = Y (L0a, w) + Y (L−1a, w)w = (wt a)a(w) + w∂wa(w) . (5.7)

Multiplying by wn and extracting the residue gives [L0, an] = (wt a− n− 1)an, which
together with VOA2 gives the result.

Physicists prefer a different convention for the modes: For a homogeneous state a they
write

Y (a, z) =
∑
n

a(n)z
−n−wt a , (5.8)

such that a(n) = an+wt a−1. The advantage of that convention is that wt a(n) = −n.
The disadvantage is of course that it only works for VOAs, and only for homogeneous
states. We will continue to use the mathematicians’ convention.

Remark: Let a and b be homogeneous. Then almost all terms in Y (a, z)b have
positive weight. More precisely, if k > 0 is such that anb = 0 for all n > k, then

Y (a, z)b ∈

( ⊕
n≥wt b+wt a−k−1

V(n)

)
[[z]][z−1] (5.9)
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5.1 Heisenberg VOA

We have already established that the Heisenberg algebra is a vertex algebra. Let us
now show that it is actually also a vertex operator algebra. The grading of V was
introduced in the proof of proposition 2.7, i.e.

wt (α−n1 · · ·α−nk
|0〉) =:

∑
i

ni , (5.10)

so that clearly V(n) = 0 for n < 0. Next we define the conformal vector

ω :=
1

2
α−1α . (5.11)

From corollary 3.7, we immediately get

Ln = Reszz
n+1Y (ω, z) =

1

2
Reszz

n+1 :Y (α, z)Y (α, z) :=
1

2

∑
m∈Z

: aman−m : (5.12)

Note in particular that L−1 = T , which establishes VOA3. Next we want to show
VOA2. For this we use the following lemma:

Lemma 5.2.
[Lm, αn] = −nαm+n (5.13)

Proof. Start with the commutator formula in the form (3.16) and read off the coefficient
of w−m−2, giving

[αn, Lm] =
∑
j≥0

(
n

j

)
(αjω)m+n−j+1 = nαm+n , (5.14)

where we have used the fact that the terms αjω in the sum vanish unless j = 1.

To check VOA2, first note that we have L0|0〉 = 0. Next specializing (5.13) to
m = 0 shows that each α−n increases the eigenvalue by n, since L0α−nb = [L0, α−n]b+
α−nL0b = α−n(L0 + n)b. By induction it follows that indeed L0a = wt (a)a.

Finally we need to show VOA1, and establish the value of the central charge cV :

Lemma 5.3.

[Lm, Ln] = (m− n)Lm+n +
1

12
m(m2 − 1)δm+n,0 (5.15)

Proof. Again read off from (3.16) (beware of the shift in moding!)

[Lm, Ln] = [ωm+1, Ln] =
∑
j≥0

(
m+ 1

j

)
(ωjω)m+n−j+2 =

∑
j≥0

(
m+ 1

j

)
(Lj−1ω)m+n−j+2

(5.16)
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First note that for n ≥ −1 we can write

Lnω =
1

2
([Ln, α−1]α−1 + α−1[Ln, α−1])|0〉 =

1

2
(αn−1α−1 + α−1αn−1)|0〉 (5.17)

Evaluating the different terms we get:

• (L−1ω)m+n+2 = Reszz
m+n+2∂Y (ω, z) = Reszz

m+n+2
∑

(−k−2)Lkz
−k−3 = (−m−

n− 2)Lm+n

• (L0ω)m+n+1 = 2ωm+n+1 = 2Lm+n

• L1ω = 1
2
(α0α−1 + α−1α0)|0〉 = 0

• L2ω = 1
2
(α1α−1 + α−1α1)|0〉 = 1

2
|0〉

• Lnω = 0 for n > 2

Combining all the pieces we get

[Lm, Ln] = (−m− n− 2)Lm+n + (2m+ 2)Lm+n +
1

2

1

6
m(m2 − 1)δm+n,0 , (5.18)

which establishes (5.15).

5.2 Virasoro VOA

The Virasoro algebra L is the Lie algebra with basis {Lm : m ∈ Z} ∪ {c} with Lie
bracket

[Lm, Ln]L := (m− n)Lm+n +
1

12
m(m2 − 1)δm+n,0c (5.19)

and c being a central element. It has a grading

L =
⊕
n∈Z

L(n) (5.20)

where
L(0) := CL0 ⊕ Cc , L(n) := CL−n for n 6= 0 . (5.21)

We also define
L(≤1) :=

⊕
n≤1

L(n) , L(≥2) :=
⊕
n≥2

L(n) . (5.22)

As in the Heisenberg case, we want U to be given by the universal enveloping algebra
U(L). To construct a corresponding module, let ` ∈ C be a complex number, and
define the L(≤1) module C|0〉` by

c|0〉` = `|0〉` , Ln|0〉` = 0 ∀n ≥ −1 . (5.23)

We then define
VV ir(`, 0) := U(L)⊗U(L(≤1)) C|0〉` . (5.24)
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By the Poincaré-Birkhoff-Witt theorem, as a vector space we have

VV ir(`, 0) = U(L(≥2)) ' S(L(≥2)) . (5.25)

That is, VV ir(`, 0) is spanned by vectors of the form

L−n1 · · ·L−nk
|0〉` n1 ≥ · · · ≥ nk ≥ 2 . (5.26)

The weight of this vector is given by
∑k

i=1 ni. Note that from the commutation relations
(5.19) the grading is exactly given by the eigenvalues of L0.

We now want to construct a VA and VOA structure on V := VV ir(`, 0) by applying
theorem 3.9. We define T := L−1 and |0〉 := |0〉`. We define

ω(z) :=
∑
n∈Z

Lnz
−n−2 . (5.27)

This is clearly a field, as any vector in V has finite weight, and there are no vectors of
negative weight. Next we want to show that it is self-local:

Exercise 5.1. Show: (z − w)4[ω(z), ω(w)] = 0.

Because of
[L−1, ω(z)] =

∑
n∈Z

(−n− 1)Ln−1z
−n−2 = ∂ω(z) (5.28)

1. in theorem 3.9 is satisfied. 2.–4. are satisfied by construction, so that VV ir(`, 0) is
indeed a vertex algebra.

To see that it is also a VOA, note that the grading conditions are automatically
satisfied. We define ω = L−2|0〉`, which is automatically ω ∈ V(2), since

L0ω = L0L−2|0〉 = [L0, L−2]|0〉 = 2ω . (5.29)

By construction the modes of ω(z) satisfy the Virasoro algebra with central charge
cV = `. The translation operator and the grading are also satisfied. In conclusion we
h ave that VV ir(`, 0) is a VOA with central charge `.

5.3 Tensor Products

Let V 1, . . . , V r be VAs. The tensor product VA is constructed from the tensor product

V = V 1 ⊗ · · · ⊗ V r . (5.30)

Its state field map is given by

Y (a(1) ⊗ · · · ⊗ a(r), z) = Y (a(1), z)⊗ · · · ⊗ Y (a(r), z) (5.31)

and the vacuum state is
|0〉 = |0〉 ⊗ · · · ⊗ |0〉 (5.32)
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and the translation operator is

T =
r∑
i=1

IV 1 ⊗ · · ·⊗T⊗︸ ︷︷ ︸
i

· · · ⊗ IV r . (5.33)

VA1 follows immediately. VA2 can be shown using the Leibniz rule for the derivative.
To show VA3, we take the order of locality K := max(K1, . . . , Kr), and then use

(z − w)KY (a(i), z)Y (b(i), w) = (z − w)KY (b(i), w)Y (a(i), z) (5.34)

repeatedly to establish locality. We therefore have

Proposition 5.4. Let V 1, . . . , V r be vertex algebras. Then the tensor product vertex
algebra (V, Y, |0〉, T ) as defined above is indeed a vertex algebra.

Now suppose that V i is also a VOA with central charge ci. Then the tensor product
is also a VOA. Its grading is given by

V(n) =
⊕

n1+...+nr=n

V 1
(n1) ⊗ . . .⊗ V r

(nr) (5.35)

and the conformal vector is

ω =
r∑
i=1

|0〉 ⊗ · · · ⊗ω⊗︸ ︷︷ ︸
i

· · · |0〉 , (5.36)

so that the Virasoro modes are given by

Ln =
r∑
i=1

IV 1 ⊗ · · ·⊗Ln⊗︸ ︷︷ ︸
i

· · · ⊗ IV r . (5.37)

A straightforward computation shows that the Ln satisfy the Virasoro algebra with
central charge c =

∑
i ci. It is also straightforward to check VOA3 and VOA2. We

therefore have:

Proposition 5.5. The tensor product of finitely many VOA is a VOA whose central
charge is the sum of the central charges.

6 Modules

Operational definition: A module of a VA V is a space W with a map V → E(W ) ‘such
that all VA axioms that make sense hold’. To make this more precise, it is better to
use the Jacobi axiom for a VA — that is, we will use VA1 and VA4. What structure
do we want to maintain? We do not want to require the existence of a vacuum in
the module W , and it therefore makes no sense to require creativity. We still want
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to maintain that the field corresponding to the vacuum be the identity though. We
therefore define:

Definition 6.1. Let V be a vertex algebra. A V -module is a vector space W with linear
map YW from V → E(W )

YW (·, z) : V → E(W ) ⊂ (End(W ))[[z, z−1]] a 7→ YW (a, z) =
∑
n∈Z

anz
−n−1

such that

1. YW (|0〉, z) = IW

2.

z−1
0 δ

(
z1 − z2

z0

)
YW (a, z1)YW (b, z2)− z−1

0 δ

(
z2 − z1

−z0

)
YW (b, z2)YW (a, z1)

= z−1
2 δ

(
z1 − z0

z2

)
YW (Y (a, z0)b, z2) (6.1)

Note that this is essentially the Jacobi identity. We did have to modify the right
hand side to make sense however, note the roles of the Y and YW .

One could hope to replace the Jacobi identity by weak commutativity and the
existence of a translation operator. Unfortunately that does not work for modules.
The reason is that we need some notion of associativity. It is however possible to
replace the Jacobi axiom by weak commutativity and associativity, i.e. by locality and
the requirement that for large k

(z + w)kYW (a, z + w)YW (b, w)v = (z + w)kYW (Y (a, z)b, w)v . (6.2)

Definition 6.2. Let V be a vertex operator algebra. A V -module is a module W which
is a V -module for V viewed as a vertex algebra such that

W =
⊕
h∈C

Wh

where
Wh = {w ∈ W : L0w = hw}

and the following grading restrictions hold: dimWh <∞ for all h ∈ C and Wh = 0 for
all h whose real part is sufficiently negative.

We will not work with modules very much. Nonetheless, here are a few useful
definitions and remarks

• The Virasoro modes LWn of YW (ω, z) satisfy the Virasoro algebra with the same
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central charge c. To see this, write (6.1) as

[Lm, Ln] =
∑
j≥0

(
m+ 1

j

)
(Lj−1ω)m+n−j+2 (6.3)

and then evaluate the right-hand side in a similar way as in the proof of Lemma 5.3,
but this time using the known commutation properties of Ln rather than α.

• A submodule of a module is a subspace U such that (U, YW ) is itself a V -module
⇔ YW (a, z)b ∈ U [[z]][z−1] ∀a ∈ V, b ∈ U ⇔ anb ∈ U∀a ∈ V, b ∈ U, n ∈ Z.

• A V -module W is called irreducible if it contains no proper submodules.

• An example of an irreducible module for the Heisenberg VOA V is M(1, α),
α ∈ C, which can be constructed very similarly to V itself: Define

M(1, α) := U(h)⊗U(h≥0) (C|α〉) , (6.4)

where the difference to the original construction of the Heisenberg VOA is in the
action of α0 on |α〉, namely

α0|α〉 = α|α〉 . (6.5)

The grading is then given by

M(1, α) =
⊕
n∈N

M(1, α)(n+ 1
2
α2) , (6.6)

as can be seen by the action of L0 on |α〉.

• In physics modules of V are essentially what is called primary fields.

7 Correlation functions

7.1 Matrix Elements

Let us define the restricted dual V ′ of a graded vector space V =
⊕

n∈Z V(n) as

V ′ :=
⊕
n∈Z

(V(n))
∗ , (7.1)

i.e. the finite linear combinations of homogeneous dual elements. Denote by 〈·, ·〉 the
usual pairing between elements of V ′ and V . Since every homogeneous component of
V is finite dimensional, there are no subtleties in defining dual elements. Using such
pairings, we can define matrix elements. A matrix element is the formal power series
in C[[z1, z

−1
1 , . . . , zn, z

−1
n ]] given by

〈v′, Y (u1, z1) . . . Y (un, zn)w〉 . (7.2)
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It turns that we can interpret this formal power series as a meromorphic function in
z1, . . . , zn! To see this, let us first restrict to the case n = 2.

Let C(z1, z2) be the field of all rational functions in z1, z2. For our purposes it
is enough to consider a subalgebra of this. Set S := {z1, z2, z1 ± z2}. We then define
C[z1, z2]S as the subalgebra of C(z1, z2) generated by z±1 , z

±
2 , and (z1±z2)−1. To connect

functions in C[z1, z2]S to formal power series, define the linear map ι12,

ι12 : C[z1, z2]S → C[[z1, z
−1
1 , z2, z

−1
2 ]] (7.3)

such that ι12(f(z1, z2)) is the formal Laurent series expansion of f(z1, z2) involving only
finitely many negative powers in z2. Analogously, we define ι21.

Example: Binomial expansion convention: ι12((z1 − z2)n) = (z1 − z2)n, ι21((z1 −
z2)n) = (−z2 + z1)n.

Theorem 7.1. The formal series

〈v′, Y (u, z1)Y (v, z2)w〉

lies in the image of the map ι12:

〈v′, Y (u, z1)Y (v, z2)w〉 = ι12f(z1, z2)

where f is a uniquely determined rational function in z1, z2 of the form

f(z1, z2) =
g(z1, z2)

(z1 − z2)kzl1z
m
2

for some g ∈ C[z1, z2]. Moreover

〈v′, Y (v, z2)Y (u, z1)w〉 = ι21f(z1, z2) .

Proof. Take k such that

(z1 − z2)k〈v′, Y (u, z1)Y (v, z2)w〉 = (z2 − z1)k〈v′, Y (v, z2)Y (u, z1)w〉

LHS as only finitely many negative powers of z2. It also only has finitely many positive
powers of z1. To see this, note that from (5.9) only finitely many terms of Y (v, z2)w
will have weight smaller than wt v′ − wt u + 1. Since the only non-vanishing terms
must have weight wt v′, this means there are only a finitely many terms un with n
negative.

For the RHS vice versa. Therefore this is equal to some Laurent polynomial h ∈
C[z1, z

−1
1 , z2, z

−1
2 ]. Then f(z1, z2) := h(z1, z2)/(z1−z2)k satisfies the required properties.

To see this, note that

〈v′, Y (u, z1)Y (v, z2)w〉 = (z1−z2)−k(z1−z2)k〈v′, Y (u, z1)Y (v, z2)w〉 = (z1−z2)−kι12h(z1, z2)

Here we used the fact that because of Y (v, z2)w ∈ V [[z2]][z−1
2 ] there are only finitely
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many negative powers of z2 in the series. The triple product in the middle thus exists
and we can use associativity to obtain the first equality. Similarly we obtain the last
statement in the theorem by multiplying with (−z2 + z1)−k. To see uniqueness, note
that the matrix element fixes the Laurent expansion of f in the annulus 0 < |z2| < |z1|.
Uniqueness then follows from uniqueness of the analytic continuation.

Exercise 7.1. Compute the free boson 2-pt matrix element 〈|0〉′, a(z)a(w)|0〉〉.

Note that the matrix element (and therefore also f(z1, z2)) is homogeneous. To
see this, note that for the term 〈v′, umvnw〉z−m−1

1 z−n−1
2 not to vanish we need to have

wt v′ = wt w+wt u−n−1+wt v−m−1 such that its degree is wt v′−wt v−wt u−wt w.
We can generalize this to matrix elements with more than two fields inserted. In

that case we multiply by
∏

1≤i<j≤n(zi−zj)kij and repeat the argument recursively, using
the fact that for terms with given powers of zi, i > k, there are only finitely negative
powers of zk. f(z1, . . . , zn) is then a rational functions with poles at zi = zj, 0,∞.

7.2 Cluster decomposition

Most VOAs of physical interest satisfy an additional property: They are of CFT type,
which in physics is called cluster decomposition. A VOA is said to be of CFT type if
V(0) is spanned by the vacuum |0〉 only, and there are no states of negative weight, that
is

V = C|0〉 ⊕
⊕
n>0

V(n) . (7.4)

Note that all examples of VOAs we have constructed so far satisfy this property. (7.4)
has some immediate consequences. First of all, it immediately gives an upper bound
on the truncation level. Using lemma 5.1, we have

anb = 0 ∀n ≥ wt a+ wt b . (7.5)

From proposition 3.8 it then immediately follows that the order of locality is at most
wt a + wt b. The matrix element f then has poles of at most order wt u + wt v at
z1 = z2.

Let us define correlation functions F through the matrix elements with w = |0〉
and v′ = 〈0|, where 〈0| is defined as the dual to |0〉. We define

ι12...nF ((u1, z1), . . . , (un, zn)) = 〈0|Y (u1, z1) . . . Y (un, zn)|0〉 (7.6)

where we used the physics notation for the dual pairing. From the discussion above we
know that F is a rational function with poles at zi = zj, 0,∞. It turns out to be useful

to consider F as function on the Riemann sphere, or more precisely, on Ĉn. Since it is
rational, it is a meromorphic function.

For VOA of CFT type we can say slightly more about the positions of the poles.
Note that because Y (un, zn)|0〉 = un +O(zn), the matrix element and therefore also F
only contains non-negative powers of zn. That is, there is no pole at zn = 0. Similar
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arguments show that there are also no poles at zi = 0. Next consider the behavior at
z1 →∞. Because 〉0|Y (u1, z1)b〉 = z−wt u1−wt b

1 〈0|u1
wt b+wt u1−1b〉 we see that F falls off

at least as fast of z−wt u1

1 . (This is where the name cluster decomposition comes from.)
There is therefore no pole at z1 =∞, and because of similar arguments not at zi =∞
either. The only poles of F are therefore at zi = zj. In total we can write the n-point
correlation function as

F ((u1, z1), . . . , (un, zn)) =
g(z1, . . . , zn)∏

i<j(zi − zj)wt ui+wt uj
(7.7)

where g(z1, . . . , zn) is a homogeneous polynomial such that F has degree −
∑

i wt ui.

7.3 Möbius transformations

In section 4 we motivated the appearance of the Virasoro algebra as coming from con-
formal transformations. Let us now work out what that means for fields and correlation
functions. We want to see now how L−1, L0, L1 produce the Möbius transformations.

From proposition 3.1 we already know that

eλL−1Y (a, z)e−λL−1 = Y (a, z + λ) . (7.8)

Next we can integrate (5.7) to

λL0Y (a, z)λ−L0 = Y (λL0a, λz) . (7.9)

One way to see this is to integrate [L0, an] = −(wt a − n − 1)an to λL0anλ
−L0 =

λwt a−n−1an. Finally from (3.16) we have the action of L1,

[L1, Y (a, z)] = z2∂Y (a, z) + 2zY (L0a, z) + Y (L1a, z) , (7.10)

which integrates to

Proposition 7.2.

eλL1Y (a, z)e−λL1 = Y
(
eλ(1−λz)L1(1− λz)−2L0a, z(1− λz)−1

)
(7.11)

Proof. (Sketch.) Define the formal power series A(λ) via

eλL1Y (a, z)e−λL1 = Y
(
A(λ)a, z(1− λz)−1

)
, (7.12)

where A(λ) has constant term 1. Obtain ODE

dA(λ)

dλ
= z2∂zA(λ) + 2zA(λ)L0 + A(λ)L1

This has a unique solution with constant term 1.
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Let us now apply such operators U ∈ {eλL0 , eλL−1} in correlation functions. First
note that

〈0|Y (u1, z1) . . . Y (un, zn)|0〉 = 〈0|U−1Y (u1, z1) . . . Y (un, zn)U |0〉 (7.13)

This follows on the one hand from the fact that for such U , U |0〉 = |0〉. On the other
hand, all such U only raise the weight of states. Since 〈0| picks out the vacuum, this
can only come from U−1|0〉 = |0〉, which establishes the claim.

We can use this to derive further properties of correlation functions. For instance
we have

〈0|Y (u1, z1) . . . Y (un, zn)|0〉
= 〈0|e−λL−1(eλL−1Y (u1, z1)e−λL−1) . . . (eλL−1Y (un, zn)e−λL−1)eλL−1|0〉

= 〈0|Y (u1, z1 + λ) . . . Y (un, zn + λ)|0〉 , (7.14)

which translates to

F ((u1, z1), . . . , (un, zn)) = F ((u1, z1 + λ), . . . , (un, zn + λ)) (7.15)

That is, the correlation function is translation invariant. This is of course compatible
with the position of the poles, and further restricts the form of the polynomial g.
Similarly, using U = eλL0 , we recover our result from above,

F ((u1, λz1), . . . , (un, λzn)) = λ−
∑

i wt uiF ((u1, z1), . . . , (un, zn)) . (7.16)

Exercise 7.2. What is the most general form of a 2-pt function of two fields of weight
wt a and wt b?

8 Lattice VOAs

8.1 Lattices

Consider Rd with inner product (·, ·). Choose a basis {ei} of Rd. The lattice L is given
by

L :=

{∑
i

niei : ni ∈ Z

}
. (8.1)

Note that L is an abelian group under addition of vectors. We say L is even if (µ, µ) ∈
2Z for all µ ∈ L. In that case L is automatically integral, that is (µ, ν) ∈ Z for all
µ, ν ∈ L.

26



8.2 Ingredients

8.2.1 Fock space

Let us now take the Heisenberg algebra h in d dimensions — that is, d copies of the
original Heisenberg algebra. We can repeat the construction in section 2.3, but this
time simply with d commuting copies of α, that is

[αim, α
j
n]h = mδm+n,0δi,jk i, j = 1, . . . d , (8.2)

or for two general elements h1, h2 ∈ h

[h1
m, h

2
n]h = mδm+n,0(h1, h2)k . (8.3)

This is simply the d fold tensor product of a single Heisenberg algebra. Now define the
Fock space associated to a lattice L as

VL := S(h−)⊗ C[L] (8.4)

Here C[L] =
⊕

µ∈LC|µ〉. This is a h-module in the usual way, where we define

hn>0|µ〉 = 0 , h0|µ〉 = (h, µ)|µ〉 . (8.5)

Similarly this is also a module of the Heisenberg VOA coming from h — it is in fact
an (infinite) direct sum of modules of the form (6.4). A basis of states in V can be
written as a|µ〉 where µ ∈ L and a is a monomial in h−,

a|µ〉 = h1
−n1
· · ·hk−nk

|µ〉 . (8.6)

8.2.2 State-field map

We now want to turn this module into an actual VOA. That is, we need to define a
state-field map

a|µ〉 7→ Y (a|µ〉, z) . (8.7)

It is clear how to turn the Heisenberg modes into fields. What is new is that we need
to construct fields corresponding to the vectors |µ〉. For this we first need to define an
action of the Abelian group L on V . The most naive way of doing this is to define
operators eµ ∈ End(V ) as

µ 7→ eµ : eµa|ν〉 = a|µ+ ν〉 , (8.8)

which is a representation of L. As we will see, this action does not lead to local
operators. Instead we need to define a projective representation

eµa|ν〉 = ε(µ, ν)a|µ+ ν〉 (8.9)
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where in general ε ∈ C∗. Associativity requires

ε(µ, ν + ρ)ε(ν, ρ) = ε(µ, ν)ε(µ+ ν, ρ) (8.10)

As we will see, for locality to work we will need to require

ε(µ, ν) = (−1)(µ,ν)ε(ν, µ) . (8.11)

An explicit construction of such a cocycle: Choose basis µi, i = 1, . . . , d. On this basis

ε(µi, µj) =

{
(−1)(µi,µj) i < j

1 i ≥ j
(8.12)

and extend by linearity of L. In particular we have

eµeν = ε(µ, ν)eµ+ν . (8.13)

Next we define an operator ẑµ ∈ End(V )[[z, z−1]] via

ẑµ(a|ν〉) := z(µ,ν)a|ν〉 (8.14)

Proposition 8.1.

[hm, ẑ
µ] = 0 (8.15)

[hm, e
µ] = δm,0(h, µ)eµ (8.16)

ẑµeν = z(µ,ν)eν ẑµ (8.17)

Proof. Act with both sides on basis vectors a|µ〉 and check that they agree.

Next we define exponential operators

E±(µ, z) = exp

 ∑
n∈±Z+

µn
n
z−n

 ∈ End(V )[[z∓]] (8.18)

They satisfy

Lemma 8.2.

[hm, E
+(µ, z)] = 0 m ≥ 0 (8.19)

[hm, E
+(µ, z)] = −(h, µ)zmE+(µ, z) m < 0 (8.20)

[hm, E
−(µ, z)] = 0 m ≤ 0 (8.21)

[hm, E
−(µ, z)] = −(h, µ)zmE−(µ, z) m > 0 (8.22)

28



Proof. Use hm, ∑
n∈Z+

µn
n
z−n

 = −(h, µ)zm m < 0 (8.23)

and similar for E− together with

[A, eB] = [A,B]eB if [A,B] commutes with B . (8.24)

Lemma 8.3.
[E±(µ, z), E±(ν, w)] = 0 (8.25)

E+(µ, z)E−(ν, w) =
(

1− w

z

)(µ,ν)

E−(ν, w)E+(µ, z) (8.26)

Proof. The first statement is obvious. For the second note that∑
m∈Z+

µmz
−m

m
,
∑

n∈−Z+

νnw
−n

n

 = −(µ, ν)
∑
m∈Z+

1

m

(w
z

)m
= (µ, ν) log

(
1− w

z

)
. (8.27)

We can now use the formal Baker-Campbell-Hausdorff formula for the case where all
higher commutators vanish,

eAeB = eBeAe[A,B] if [A,B] commutes with A,B . (8.28)

Now we are ready to define vertex operators in two special cases:

Y (|µ〉, z) = E−(−µ, z)E+(−µ, z)eµẑµ (8.29)

and
Y (h−1|0〉, z) = h(z) =

∑
n∈Z

hnz
−n−1 (8.30)

Note that we have
Y (|µ〉, z)|0〉 = |µ〉+O(z) , (8.31)

8.2.3 Conformal vector

We define the conformal vector as in the tensor product of d Heisenberg VOAs,

ω =
1

2

d∑
i=1

αi−1α
i
−1|0〉 (8.32)
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so that

Y (ω, z) =
1

2

d∑
i=1

: αi(z)αi(z) : (8.33)

From proposition 5.5 we know that the modes Lm then form a Virasoro algebra with
central charge d. We define T := L−1 and indeed have

Proposition 8.4.

[L−1, Y (h−1|0〉, z)] = ∂zY (h−1|0〉, z) (8.34)

[L−1, Y (|µ〉, z)] = ∂zY (|µ〉, z) (8.35)

Proof. The first identity follows as in the Heisenberg case. For the second one see
proposition 6.5.2 in [2].

8.3 Construction

We now want to apply the construction theorem 3.9 to construct the lattice VA. We de-
fine |0〉 := |0〉, and T as in 8.2.3. As the set of generators we pick {Y (αi−1|0〉, z)}i=1,...d∪
{Y (|µ〉, z)}µ∈L. This is indeed a local set of fields:

Proposition 8.5.

(z − w)2[Y (h1
−1|0〉, z), Y (h2

−1|0〉, w)] = 0 (8.36)

(z − w)[Y (h−1|0〉, z), Y (|ν〉, w)] = 0 (8.37)

(z − w)K [Y (|µ〉, z), Y (|ν〉, w)] = 0 (8.38)

with K = max(0,−(µ, ν)).

Proof. • (8.36): follows as in the Heisenberg case.

• (8.37):
[Y (h−1|0〉, z), Y (|ν〉, w)] = (h, ν)w−1δ(z/w)Y (|ν〉, w) (8.39)

This follows from expanding h(z) and then using lemma 8.2 and proposition 8.1
(see Prop 6.5.2 in [2]).

• (8.38):

Y (|µ〉, z)Y (|ν〉, w)

= z(µ,ν)
(

1− w

z

)(µ,ν)

E−(−µ, z)E−(−ν, w)E+(−µ, z)E+(−ν, w)eµeν ẑµŵν

= ε(µ, ν) (z − w)(µ,ν) E−(−µ, z)E−(−ν, w)E+(−µ, z)E+(−ν, w)eµ+ν ẑµŵν

(8.40)
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On the other hand we have

Y (|ν〉, w)Y (|µ〉, z)
= ε(ν, µ) (w − z)(µ,ν) E−(−µ, z)E−(−ν, w)E+(−µ, z)E+(−ν, w)eµ+ν ẑµŵν

= (−1)(µ,ν)ε(µ, ν) (w − z)(µ,ν) E−(−µ, z)E−(−ν, w)E+(−µ, z)E+(−ν, w)eµ+ν ẑµŵν

(8.41)

If (µ, ν) ≥ 0, then the two expressions are manifestly identical. Otherwise multi-
ply with (z − w)K to get a non-negative exponent in the factor.

Let us now check that all the assumptions of theorem 3.9 are satisfied. 1. follows
from proposition 8.4, and 2. is the same as in the Heisenberg case. 3. holds by construc-
tion of V , and 4. from (8.31) and the construction of the Fock space. This establishes
that we have a vertex algebra, with Y defined as in theorem 3.9.

To check that it is a VOA, we use section 8.2.3. VOA1 and VOA3 follow imme-
diately. We then use VOA2 to actually define the grading. We namely have

L0(h1
−n1
· · ·hr−nr

|µ〉) =

(
n1 + · · ·+ nr +

1

2
(µ, µ))

)
(h1
−n1
· · ·hr−nr

|µ〉) (8.42)

It follows directly that this grading is a good VOA grading.
In total we thus have

Theorem 8.6. Let L be a positive definite even lattice of rank d. Then (VL, Y, |0〉, ω)
as defined above is a vertex operator algebra with central charge d.

9 Characters, Modular Forms and Zhu’s Theorem

9.1 Characters

Let V be a VOA of central charge c. We define the character of V as the series

χV (τ) = TrV q
L0−c/24 = q−c/24

∑
n

dimV(n)q
n q = e2πiτ (9.1)

Exercise 9.1. Let V be the Heisenberg VOA. Show:

χV (τ) =
1

η(τ)
=

1

q1/24
∏

n>0(1− qn)
(9.2)

Exercise 9.2. Let V , W be VOA. Show:

χV⊗W (τ) = χV (τ)χW (τ) (9.3)
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In particular, the character of the tensor product of 24 Heisenberg VOA is sim-
ply 1/∆(τ). This hints that characters of VOAs have good modular transformation
properties.

What about the character of a lattice VOA? Let L be a positive definite lattice.
Then the lattice theta function ΘL(τ) is defined as

ΘL(τ) =
∑
µ∈L

q
1
2

(µ,µ) . (9.4)

Exercise 9.3. Let L be an even positive definite lattice, and VL its associated VOA.
Then

χVL(τ) =
ΘL(τ)

η(τ)d
(9.5)

Let L be a lattice. We define its dual lattice L∗ as

L∗ := {µ ∈ Rd : (µ, ν) ∈ Z ∀ν ∈ L} . (9.6)

Note that if L is integral, then L ⊂ L∗. We say L is self-dual or unimodular if L = L∗.
The lattice theta functions of self-dual lattices have very nice modular properties:

Theorem 9.1 (Hecke-Schoenberg). Let L an even positive definite self-dual lattice of
rank d = 2k. Then ΘL(τ) is a modular form of weight k.

It follows that the character χVL is a modular function (possibly with a character),
i.e. that it is modular invariant! Does this property hold for more general VOAs?

9.2 Rational VOAs and Zhu’s Theorem

Roughly speaking we call a VOA rational if it only has a finite number of inequiva-
lent irreducible modules. To make this definition precise, we need to introduce a few
concepts. For details and additional references see [3] and [4].

Definition 9.1. Let V be a VOA, and let M be a module of V as a vertex algebra,
i.e. satisfying definition 6.1. We say it is a weak V -module if it has a grading M =⊕

n∈NM[n] such that

v ∈ V(k) ⇒ vMn : M[m] →M[m+k−n−1] (9.7)

We can now give a precise definition:

Definition 9.2. A VOA V is weakly rational if

1. every V -module is completely reducible

2. the set Φ(V ) of irreducible V -modules is finite

3. every irreducible weak V -module is a V -module
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Finally, we have

Definition 9.3. We say V is C2-cofinite if the subspace

C2(V ) := 〈u−2v : u, v ∈ V 〉 (9.8)

has finite codimension in V , i.e. V/C2(V ) is finite dimensional.

Theorem 9.2 (Zhu). Let V be a C2 cofinite weakly rational VOA with Φ(V ) its set
of irreducible modules labeled by M,N . Then there is a representation ρ of SL2(Z) by
complex matrices ρ(A) indexed by M,N such that the characters obey

χM

(
aτ + b

cτ + d

)
=

∑
N∈Φ(V )

ρ

(
a b
c d

)
MN

χN(τ) , (9.9)

that is they form a |Φ(V )|-dimensional representation of SL2(Z).

9.3 Modules of lattice VOAs

Let VL be a lattice VOA. To construct its irreducible modules, let us start with the
construction of Heisenberg modules again. That is, we choose λ ∈ Rd and associate it
with a ground state |λ〉 such that for all h ∈ h

hn|λ〉 = 0 n > 0 , h0|λ〉 = (h, λ)|λ〉 . (9.10)

We then try to define the module map YM : VL →M exactly as in the construction of
VL in section 8.2, that is in (8.29) and (8.30). There are however two issues:

• Since ẑµ|λ〉 = z(µ,λ)|λ〉 need to give an integral power of z for all µ ∈ L, it follows
that λ must be in the dual lattice L∗.

• Since eµ|λ〉 = |λ+µ〉, it is necessary that the module is a direct sum of all ground
states of the form λ+ µ.

This suggests that all irreducible modules are of the form VL+λ given by

VL+λ = S(h−)⊗ C[L+ λ] = S(h−)⊗
⊕
µ∈L

C|λ+ µ〉 (9.11)

where λ ∈ L∗ is in the dual lattice of L. Since two λ differing by a lattice vector give
equivalent modules, the total number of irreducible modules is |L∗ : L|, that is the
order of the quotient of L∗ by L as groups. All these arguments can be made more
precise to give the following result:

Theorem 9.3. Let L be an even lattice. Then VL is weakly rational and C2-cofinite,
and its irreducible modules are the Fock spaces VL+λ, λ ∈ L∗, giving a total of |L∗ : L|
of them.

33



Note that for integral lattices |L∗ : L| is always finite. Let M = (e1, . . . , ed)
T be the

generator matrix of M whose rows are given by the generators ei of the lattice. The
volume of the unit cell is given by vol(L) := (detMMT )1/2, which is also |L∗ : L|.

If vol(L) = 1 or equivalently L = L∗ we say that L is unimodular or self-dual.
In that case VL only has a single module, namely VL itself. Zhu’s theorem 9.2 then
tells us that χVL(τ) is a 1-dimensional representation of SL2(Z). Such a VOA is called
self-dual or holomorphic. Let us furthermore assume that d is a multiple of 24. In
that case χVL(τ) is a modular function without a character, that is it is invariant under
SL2(Z) transformations. To see this, note that due to the moding ρ(T ) = 1. Moreover
we know that ρ(S2) = ρ((ST )3) = 1, from which the claim follows.

10 Monstrous Moonshine

10.1 Niemeier lattices

Let us consider even self-dual lattices in d = 24. By theorem 9.1 we know that their
lattice theta function is a modular form of weight 12. Using the fact that any lattice
L contains only one vector of length 0, we can therefore write it as

ΘL(τ) = E4(τ)3 + A∆(τ) , (10.1)

where E4 is the Eisenstein series normalized such that E4(τ) = 1 + . . ., ∆(τ) is the
discriminant function

∆(τ) =
1

1728
(E4(τ)3 − E6(τ)2) = e2πiτ

∏
n>0

(1− e2πiτn) , (10.2)

and A is some integer. It turns out that there are exactly 24 even self-dual lattices
in 24 dimensions: the so-called Niemeier lattices [5]. These lattices are interesting for
multiple reasons. Among other things, they have large automorphism groups Aut(L).
An automorphism g ∈ Aut(L) of a lattice L is an isometry that fixes the origin and
maps L to itself. This means that the action of g on the coordinates can be represented
as a matrix O(g) ∈ O(d). On the other hand, when acting on the basis vectors of the
lattice, g must act as a matrix B(g) ∈ GL(d,Z), that is a d × d matrix with integral
entries and determinant ±1. That is,

B(g)M = MO(g) . (10.3)

It then follows that Aut(L) is finite. One very interesting Niemeier lattice is the Leech
lattice. It is the only Niemeier lattice that has no vectors of length square 2. That is,
its lattice theta function is given by

Θ(τ) = E4(τ)3 − 720∆(τ) = 1 + 196560q2 + . . . (10.4)

It has a very interesting automorphism group: The Conway group Co0.
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10.2 Sporadic groups

Let G be a finite group. A subgroup N < G is normal if gNg−1 ⊂ N . We write
N / G. The motivation for this definition is that then G/N is again a group. G is
called simple if its only normal subgroups are G and the trivial group {e}. A first step
towards classifying all finite groups is to classify all simple groups. Indeed, this has
been achieved.

Theorem 10.1. Any finite simple group is isomorphic to either

• a cyclic group of prime order Zp

• an alternating group An, n ≥ 5

• a group of Lie type

or one of 26 so-called sporadic groups.

The largest of the sporadic groups is the Monster group M, which has order

|M| = 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 ≈ 8 · 1053 (10.5)

Its smallest irreducible representations have dimensions 1, 196883, 21296876, . . ..

10.3 The Monster VOA V \

Let V be a VOA. An automorphism of V is a (vector space) automorphism g̃ : V → V
satisfying

g̃Y (a, z)g̃−1 = Y (g̃a, z) g̃ω = ω . (10.6)

Let us consider the Leech-VOA VL. Not surprisingly, it is possible to lift an automor-
phism g of the underlying lattice L to automorphisms of VL. The rough idea is to act
on the Heisenberg modes as

g̃ : αi 7→ O(g)ijα
j (10.7)

and to act on the ground states as

g̃ : |µ〉 7→ |O(g)µ〉 . (10.8)

The only subtlety comes from the cocycles ε(µ, ν), which can require us to extend g.
For the Leech VOA it turns out that the discrete part of Aut(VL) is Z24

2 .Co0, that is
an extension of Co0 by Z24

2 . Co0 itself is a Z2 extension of the simple sporadic group
Co1, Co0 = Z2.Co1.

The Leech-VOA has character

χL(τ) = j(τ)− 720 = q−1 + 24 + 196884q + 21493760q2 + . . . (10.9)

From what we have said, it is clear that this has Conway moonshine, that is its coef-
ficients decompose into representations of Co0. How do we get monstrous moonshine
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though? First note that Z24+1
2 .Co1 is a maximal subgroup of M. That is, we are only

missing a single generator. Next note that the constant term 24 is problematic, since
there is no non-trivial monster representation of this dimension.

To address these issues, we want to orbifold VL. To this end, we first consider the
subspace V Z2

L of VL which is invariant under the Z2 symmetry of the lattice x 7→ −x.
V Z2
L is again a VOA, but it is no longer holomorphic: It has four irreducible modules
M1

+,M
1
−,M

−1
+ ,M−1

− . Here M1
± are the original VL decomposed into states which have

eigenvalue ±1 under Z2. M−1
± are new modules, coming from the so-called twisted

sector. The idea is now to adjoin some of these modules to V Z2 = M1
+ to recover a

holomorphic VOA. This can be done to define

V \ := M1
+ ⊕M−1

+ . (10.10)

It turns out that the symmetry of V \ is enhanced to the monster symmetry, i.e. Aut(V \) '
M, and its character is given by

χV \(τ) = j(τ)− 744 = q−1 + 196884q + 21493760q2 + . . . . (10.11)
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